Cargando…
New Quality-Range-Setting Method Based on Between- and Within-Batch Variability for Biosimilarity Assessment
Analytical biosimilarity assessment relies on two implicit conditions. First, the analytical method must meet a set of requirements known as fit for intended use related to trueness and precision. Second, the manufacture of the reference drug product must be under statistical quality control; i.e.,...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8226621/ https://www.ncbi.nlm.nih.gov/pubmed/34205892 http://dx.doi.org/10.3390/ph14060527 |
_version_ | 1783712330407739392 |
---|---|
author | Oliva, Alexis Llabrés, Matías |
author_facet | Oliva, Alexis Llabrés, Matías |
author_sort | Oliva, Alexis |
collection | PubMed |
description | Analytical biosimilarity assessment relies on two implicit conditions. First, the analytical method must meet a set of requirements known as fit for intended use related to trueness and precision. Second, the manufacture of the reference drug product must be under statistical quality control; i.e., the between-batch variability is not larger than the expected within-batch variability. In addition, the quality range (QR) method is based on one sample per batch to avoid biased standard deviations in unbalanced studies. This, together with the small number of reference drug product batches, leads to highly variable QR bounds. In this paper, we propose to set the QR bounds from variance components estimated using a two-level nested linear model, accounting for between- and within-batch variances of the reference drug product. In this way, the standard deviation used to set QR is equal to the square root of the sum of between-batch variance plus the within-batch variance estimated by the maximum likelihood method. The process of this method, which we call QR(ML), is as follows. First, the condition of statistical quality control of the manufacture process is tested. Second, confidence intervals for QR bounds lead to an analysis of the reliability of the biosimilarity assessment. Third, after analyzing the molecular weight and dimer content of seven batches of a commercial bevacizumab drug product, we concluded that the QR(ML) method was more reliable than QR. |
format | Online Article Text |
id | pubmed-8226621 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82266212021-06-26 New Quality-Range-Setting Method Based on Between- and Within-Batch Variability for Biosimilarity Assessment Oliva, Alexis Llabrés, Matías Pharmaceuticals (Basel) Article Analytical biosimilarity assessment relies on two implicit conditions. First, the analytical method must meet a set of requirements known as fit for intended use related to trueness and precision. Second, the manufacture of the reference drug product must be under statistical quality control; i.e., the between-batch variability is not larger than the expected within-batch variability. In addition, the quality range (QR) method is based on one sample per batch to avoid biased standard deviations in unbalanced studies. This, together with the small number of reference drug product batches, leads to highly variable QR bounds. In this paper, we propose to set the QR bounds from variance components estimated using a two-level nested linear model, accounting for between- and within-batch variances of the reference drug product. In this way, the standard deviation used to set QR is equal to the square root of the sum of between-batch variance plus the within-batch variance estimated by the maximum likelihood method. The process of this method, which we call QR(ML), is as follows. First, the condition of statistical quality control of the manufacture process is tested. Second, confidence intervals for QR bounds lead to an analysis of the reliability of the biosimilarity assessment. Third, after analyzing the molecular weight and dimer content of seven batches of a commercial bevacizumab drug product, we concluded that the QR(ML) method was more reliable than QR. MDPI 2021-06-01 /pmc/articles/PMC8226621/ /pubmed/34205892 http://dx.doi.org/10.3390/ph14060527 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Oliva, Alexis Llabrés, Matías New Quality-Range-Setting Method Based on Between- and Within-Batch Variability for Biosimilarity Assessment |
title | New Quality-Range-Setting Method Based on Between- and Within-Batch Variability for Biosimilarity Assessment |
title_full | New Quality-Range-Setting Method Based on Between- and Within-Batch Variability for Biosimilarity Assessment |
title_fullStr | New Quality-Range-Setting Method Based on Between- and Within-Batch Variability for Biosimilarity Assessment |
title_full_unstemmed | New Quality-Range-Setting Method Based on Between- and Within-Batch Variability for Biosimilarity Assessment |
title_short | New Quality-Range-Setting Method Based on Between- and Within-Batch Variability for Biosimilarity Assessment |
title_sort | new quality-range-setting method based on between- and within-batch variability for biosimilarity assessment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8226621/ https://www.ncbi.nlm.nih.gov/pubmed/34205892 http://dx.doi.org/10.3390/ph14060527 |
work_keys_str_mv | AT olivaalexis newqualityrangesettingmethodbasedonbetweenandwithinbatchvariabilityforbiosimilarityassessment AT llabresmatias newqualityrangesettingmethodbasedonbetweenandwithinbatchvariabilityforbiosimilarityassessment |