Cargando…
Comparison of Solution Chemical Properties and Biological Activity of Ruthenium Complexes of Selected β-Diketone, 8-Hydroxyquinoline and Pyrithione Ligands
In this work, the various biological activities of eight organoruthenium(II) complexes were evaluated to reveal correlations with their stability and reactivity in aqueous media. Complexes with general formula [Ru(η(6)-p-cymene)(X,Y)(Z)] were prepared, where (X,Y) represents either an O,O-ligand (β-...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8226722/ https://www.ncbi.nlm.nih.gov/pubmed/34072270 http://dx.doi.org/10.3390/ph14060518 |
_version_ | 1783712354689613824 |
---|---|
author | Pivarcsik, Tamás Tóth, Gábor Szemerédi, Nikoletta Bogdanov, Anita Spengler, Gabriella Kljun, Jakob Kladnik, Jerneja Turel, Iztok Enyedy, Éva A. |
author_facet | Pivarcsik, Tamás Tóth, Gábor Szemerédi, Nikoletta Bogdanov, Anita Spengler, Gabriella Kljun, Jakob Kladnik, Jerneja Turel, Iztok Enyedy, Éva A. |
author_sort | Pivarcsik, Tamás |
collection | PubMed |
description | In this work, the various biological activities of eight organoruthenium(II) complexes were evaluated to reveal correlations with their stability and reactivity in aqueous media. Complexes with general formula [Ru(η(6)-p-cymene)(X,Y)(Z)] were prepared, where (X,Y) represents either an O,O-ligand (β-diketone), N,O-ligand (8-hydroxyquinoline) or O,S-pyrithione-type ligands (pyrithione = 1-hydroxypyridine-2(1H)-thione) with Cl(−) or 1,3,5-triaza-7-phosphaadamantane (PTA) as a co-ligand (Z). The tested complexes inhibit the chlamydial growth on HeLa cells, and one of the complexes inhibits the growth of the human herpes simplex virus-2. The chlorido complexes with N,O- and O,S-ligands displayed strong antibacterial activity on Gram-positive strains including the resistant S. aureus (MRSA) and were cytotoxic in adenocarcinoma cell lines. Effect of the structural variation on the biological properties and solution stability was clearly revealed. The decreased bioactivity of the β-diketone complexes can be related to their lower stability in solution. In contrast, the O,S-pyrithione-type complexes are highly stable in solution and the complexation prevents the oxidation of the O,S-ligands. Comparing the binding of PTA and the chlorido co-ligands, it can be concluded that PTA is generally more strongly coordinated to ruthenium, which at the same time decreased the reactivity of complexes with human serum albumin or 1-methylimidazole as well as diminished their bioactivity. |
format | Online Article Text |
id | pubmed-8226722 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82267222021-06-26 Comparison of Solution Chemical Properties and Biological Activity of Ruthenium Complexes of Selected β-Diketone, 8-Hydroxyquinoline and Pyrithione Ligands Pivarcsik, Tamás Tóth, Gábor Szemerédi, Nikoletta Bogdanov, Anita Spengler, Gabriella Kljun, Jakob Kladnik, Jerneja Turel, Iztok Enyedy, Éva A. Pharmaceuticals (Basel) Article In this work, the various biological activities of eight organoruthenium(II) complexes were evaluated to reveal correlations with their stability and reactivity in aqueous media. Complexes with general formula [Ru(η(6)-p-cymene)(X,Y)(Z)] were prepared, where (X,Y) represents either an O,O-ligand (β-diketone), N,O-ligand (8-hydroxyquinoline) or O,S-pyrithione-type ligands (pyrithione = 1-hydroxypyridine-2(1H)-thione) with Cl(−) or 1,3,5-triaza-7-phosphaadamantane (PTA) as a co-ligand (Z). The tested complexes inhibit the chlamydial growth on HeLa cells, and one of the complexes inhibits the growth of the human herpes simplex virus-2. The chlorido complexes with N,O- and O,S-ligands displayed strong antibacterial activity on Gram-positive strains including the resistant S. aureus (MRSA) and were cytotoxic in adenocarcinoma cell lines. Effect of the structural variation on the biological properties and solution stability was clearly revealed. The decreased bioactivity of the β-diketone complexes can be related to their lower stability in solution. In contrast, the O,S-pyrithione-type complexes are highly stable in solution and the complexation prevents the oxidation of the O,S-ligands. Comparing the binding of PTA and the chlorido co-ligands, it can be concluded that PTA is generally more strongly coordinated to ruthenium, which at the same time decreased the reactivity of complexes with human serum albumin or 1-methylimidazole as well as diminished their bioactivity. MDPI 2021-05-27 /pmc/articles/PMC8226722/ /pubmed/34072270 http://dx.doi.org/10.3390/ph14060518 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pivarcsik, Tamás Tóth, Gábor Szemerédi, Nikoletta Bogdanov, Anita Spengler, Gabriella Kljun, Jakob Kladnik, Jerneja Turel, Iztok Enyedy, Éva A. Comparison of Solution Chemical Properties and Biological Activity of Ruthenium Complexes of Selected β-Diketone, 8-Hydroxyquinoline and Pyrithione Ligands |
title | Comparison of Solution Chemical Properties and Biological Activity of Ruthenium Complexes of Selected β-Diketone, 8-Hydroxyquinoline and Pyrithione Ligands |
title_full | Comparison of Solution Chemical Properties and Biological Activity of Ruthenium Complexes of Selected β-Diketone, 8-Hydroxyquinoline and Pyrithione Ligands |
title_fullStr | Comparison of Solution Chemical Properties and Biological Activity of Ruthenium Complexes of Selected β-Diketone, 8-Hydroxyquinoline and Pyrithione Ligands |
title_full_unstemmed | Comparison of Solution Chemical Properties and Biological Activity of Ruthenium Complexes of Selected β-Diketone, 8-Hydroxyquinoline and Pyrithione Ligands |
title_short | Comparison of Solution Chemical Properties and Biological Activity of Ruthenium Complexes of Selected β-Diketone, 8-Hydroxyquinoline and Pyrithione Ligands |
title_sort | comparison of solution chemical properties and biological activity of ruthenium complexes of selected β-diketone, 8-hydroxyquinoline and pyrithione ligands |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8226722/ https://www.ncbi.nlm.nih.gov/pubmed/34072270 http://dx.doi.org/10.3390/ph14060518 |
work_keys_str_mv | AT pivarcsiktamas comparisonofsolutionchemicalpropertiesandbiologicalactivityofrutheniumcomplexesofselectedbdiketone8hydroxyquinolineandpyrithioneligands AT tothgabor comparisonofsolutionchemicalpropertiesandbiologicalactivityofrutheniumcomplexesofselectedbdiketone8hydroxyquinolineandpyrithioneligands AT szemeredinikoletta comparisonofsolutionchemicalpropertiesandbiologicalactivityofrutheniumcomplexesofselectedbdiketone8hydroxyquinolineandpyrithioneligands AT bogdanovanita comparisonofsolutionchemicalpropertiesandbiologicalactivityofrutheniumcomplexesofselectedbdiketone8hydroxyquinolineandpyrithioneligands AT spenglergabriella comparisonofsolutionchemicalpropertiesandbiologicalactivityofrutheniumcomplexesofselectedbdiketone8hydroxyquinolineandpyrithioneligands AT kljunjakob comparisonofsolutionchemicalpropertiesandbiologicalactivityofrutheniumcomplexesofselectedbdiketone8hydroxyquinolineandpyrithioneligands AT kladnikjerneja comparisonofsolutionchemicalpropertiesandbiologicalactivityofrutheniumcomplexesofselectedbdiketone8hydroxyquinolineandpyrithioneligands AT tureliztok comparisonofsolutionchemicalpropertiesandbiologicalactivityofrutheniumcomplexesofselectedbdiketone8hydroxyquinolineandpyrithioneligands AT enyedyevaa comparisonofsolutionchemicalpropertiesandbiologicalactivityofrutheniumcomplexesofselectedbdiketone8hydroxyquinolineandpyrithioneligands |