Cargando…

Mechanical Properties of Hybrid Graphene Nanoplatelet-Nanosilica Filled Unidirectional Basalt Fibre Composites

Basalt fibre (BF) is one of the most promising reinforcing natural materials for polymer composites that could replace the usage of glass fibre due to its comparable properties. The aim of adding nanofiller in polymer composites is to enhance the mechanical properties of the composites. In theory, t...

Descripción completa

Detalles Bibliográficos
Autores principales: Hashim, Ummu Raihanah, Jumahat, Aidah, Jawaid, Mohammad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8226757/
https://www.ncbi.nlm.nih.gov/pubmed/34206085
http://dx.doi.org/10.3390/nano11061468
_version_ 1783712362972315648
author Hashim, Ummu Raihanah
Jumahat, Aidah
Jawaid, Mohammad
author_facet Hashim, Ummu Raihanah
Jumahat, Aidah
Jawaid, Mohammad
author_sort Hashim, Ummu Raihanah
collection PubMed
description Basalt fibre (BF) is one of the most promising reinforcing natural materials for polymer composites that could replace the usage of glass fibre due to its comparable properties. The aim of adding nanofiller in polymer composites is to enhance the mechanical properties of the composites. In theory, the incorporation of high strength and stiffness nanofiller, namely graphene nanoplatelet (GNP), could create superior composite properties. However, the main challenges of incorporating this nanofiller are its poor dispersion state and aggregation in epoxy due to its high surface area and strong Van der Waals forces in between graphene sheets. In this study, we used one of the effective methods of functionalization to improve graphene’s dispersion and also introducing nanosilica filler to enhance platelets shear mechanism. The high dispersive silica nanospheres were introduced in the tactoids morphology of stacked graphene nanosheets in order to produce high shear forces during milling and exfoliate the GNP. The hybrid nanofiller modified epoxy polymers were impregnated into BF to evaluate the mechanical properties of the basalt fibre reinforced polymeric (BFRP) system under tensile, compression, flexural, and drop-weight impact tests. In response to the synergistic effect of zero-dimensional nanosilica and two-dimensional graphene nanoplatelets enhanced the mechanical properties of BFRP, especially in Basalt fibre + 0.2 wt% GNP/15 wt% NS (BF-H0.2) with the highest increment in modulus and strength to compare with unmodified BF. These findings also revealed that the incorporation of hybrid nanofiller contributed to the improvement in the mechanical properties of the composite. BF has huge potential as an alternative to the synthetic glass fibre for the fabrication of mechanical components and structures.
format Online
Article
Text
id pubmed-8226757
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-82267572021-06-26 Mechanical Properties of Hybrid Graphene Nanoplatelet-Nanosilica Filled Unidirectional Basalt Fibre Composites Hashim, Ummu Raihanah Jumahat, Aidah Jawaid, Mohammad Nanomaterials (Basel) Article Basalt fibre (BF) is one of the most promising reinforcing natural materials for polymer composites that could replace the usage of glass fibre due to its comparable properties. The aim of adding nanofiller in polymer composites is to enhance the mechanical properties of the composites. In theory, the incorporation of high strength and stiffness nanofiller, namely graphene nanoplatelet (GNP), could create superior composite properties. However, the main challenges of incorporating this nanofiller are its poor dispersion state and aggregation in epoxy due to its high surface area and strong Van der Waals forces in between graphene sheets. In this study, we used one of the effective methods of functionalization to improve graphene’s dispersion and also introducing nanosilica filler to enhance platelets shear mechanism. The high dispersive silica nanospheres were introduced in the tactoids morphology of stacked graphene nanosheets in order to produce high shear forces during milling and exfoliate the GNP. The hybrid nanofiller modified epoxy polymers were impregnated into BF to evaluate the mechanical properties of the basalt fibre reinforced polymeric (BFRP) system under tensile, compression, flexural, and drop-weight impact tests. In response to the synergistic effect of zero-dimensional nanosilica and two-dimensional graphene nanoplatelets enhanced the mechanical properties of BFRP, especially in Basalt fibre + 0.2 wt% GNP/15 wt% NS (BF-H0.2) with the highest increment in modulus and strength to compare with unmodified BF. These findings also revealed that the incorporation of hybrid nanofiller contributed to the improvement in the mechanical properties of the composite. BF has huge potential as an alternative to the synthetic glass fibre for the fabrication of mechanical components and structures. MDPI 2021-06-01 /pmc/articles/PMC8226757/ /pubmed/34206085 http://dx.doi.org/10.3390/nano11061468 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Hashim, Ummu Raihanah
Jumahat, Aidah
Jawaid, Mohammad
Mechanical Properties of Hybrid Graphene Nanoplatelet-Nanosilica Filled Unidirectional Basalt Fibre Composites
title Mechanical Properties of Hybrid Graphene Nanoplatelet-Nanosilica Filled Unidirectional Basalt Fibre Composites
title_full Mechanical Properties of Hybrid Graphene Nanoplatelet-Nanosilica Filled Unidirectional Basalt Fibre Composites
title_fullStr Mechanical Properties of Hybrid Graphene Nanoplatelet-Nanosilica Filled Unidirectional Basalt Fibre Composites
title_full_unstemmed Mechanical Properties of Hybrid Graphene Nanoplatelet-Nanosilica Filled Unidirectional Basalt Fibre Composites
title_short Mechanical Properties of Hybrid Graphene Nanoplatelet-Nanosilica Filled Unidirectional Basalt Fibre Composites
title_sort mechanical properties of hybrid graphene nanoplatelet-nanosilica filled unidirectional basalt fibre composites
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8226757/
https://www.ncbi.nlm.nih.gov/pubmed/34206085
http://dx.doi.org/10.3390/nano11061468
work_keys_str_mv AT hashimummuraihanah mechanicalpropertiesofhybridgraphenenanoplateletnanosilicafilledunidirectionalbasaltfibrecomposites
AT jumahataidah mechanicalpropertiesofhybridgraphenenanoplateletnanosilicafilledunidirectionalbasaltfibrecomposites
AT jawaidmohammad mechanicalpropertiesofhybridgraphenenanoplateletnanosilicafilledunidirectionalbasaltfibrecomposites