Cargando…
Automatic Hip Detection in Anteroposterior Pelvic Radiographs—A Labelless Practical Framework
Automated detection of the region of interest (ROI) is a critical step in the two-step classification system in several medical image applications. However, key information such as model parameter selection, image annotation rules, and ROI confidence score are essential but usually not reported. In...
Autores principales: | Liu, Feng-Yu, Chen, Chih-Chi, Cheng, Chi-Tung, Wu, Cheng-Ta, Hsu, Chih-Po, Fu, Chih-Yuan, Chen, Shann-Ching, Liao, Chien-Hung, Lee, Mel S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8226859/ https://www.ncbi.nlm.nih.gov/pubmed/34200151 http://dx.doi.org/10.3390/jpm11060522 |
Ejemplares similares
-
Predicting the Risk of Total Hip Replacement by Using A Deep Learning Algorithm on Plain Pelvic Radiographs: Diagnostic Study
por: Chen, Chih-Chi, et al.
Publicado: (2023) -
Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs
por: Cheng, Chi-Tung, et al.
Publicado: (2019) -
The Feasibility and Performance of Total Hip Replacement Prediction Deep Learning Algorithm with Real World Data
por: Chen, Chih-Chi, et al.
Publicado: (2023) -
Evaluation of Tilt-correction of Anteversion on Anteroposterior Pelvic Radiographs in Total Hip Arthroplasty
por: Muir, Jeffrey M, et al.
Publicado: (2018) -
Differences of Anteroposterior Pelvic Radiographs Between Supine Position and Standing Position in Patients with Developmental Dysplasia of the Hip
por: Yang, Guo‐yue, et al.
Publicado: (2019)