Cargando…
Integrating ECG Monitoring and Classification via IoT and Deep Neural Networks
Anesthesia assessment is most important during surgery. Anesthesiologists use electrocardiogram (ECG) signals to assess the patient’s condition and give appropriate medications. However, it is not easy to interpret the ECG signals. Even physicians with more than 10 years of clinical experience may s...
Autores principales: | Yeh, Li-Ren, Chen, Wei-Chin, Chan, Hua-Yan, Lu, Nan-Han, Wang, Chi-Yuan, Twan, Wen-Hung, Du, Wei-Chang, Huang, Yung-Hui, Hsu, Shih-Yen, Chen, Tai-Been |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8226863/ https://www.ncbi.nlm.nih.gov/pubmed/34201215 http://dx.doi.org/10.3390/bios11060188 |
Ejemplares similares
-
Classification of the Multiple Stages of Parkinson’s Disease by a Deep Convolution Neural Network Based on (99m)Tc-TRODAT-1 SPECT Images
por: Hsu, Shih-Yen, et al.
Publicado: (2020) -
An IoT and Fog Computing-Based Monitoring System for Cardiovascular Patients with Automatic ECG Classification Using Deep Neural Networks
por: Rincon, Jaime A., et al.
Publicado: (2020) -
Efficient Classification of ECG Images Using a Lightweight CNN with Attention Module and IoT
por: Sadad, Tariq, et al.
Publicado: (2023) -
Hands-on deep learning for IoT: train neural network models to develop intelligent IoT applications
por: Karim, Rezaul, et al.
Publicado: (2019) -
IoT-Based Bee Swarm Activity Acoustic Classification Using Deep Neural Networks
por: Zgank, Andrej
Publicado: (2021)