Cargando…
A Single-Trial P300 Detector Based on Symbolized EEG and Autoencoded-(1D)CNN to Improve ITR Performance in BCIs
In this paper, we propose a breakthrough single-trial P300 detector that maximizes the information translate rate (ITR) of the brain–computer interface (BCI), keeping high recognition accuracy performance. The architecture, designed to improve the portability of the algorithm, demonstrated full impl...
Autores principales: | De Venuto, Daniela, Mezzina, Giovanni |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8226883/ https://www.ncbi.nlm.nih.gov/pubmed/34201381 http://dx.doi.org/10.3390/s21123961 |
Ejemplares similares
-
A Cybersecure P300-Based Brain-to-Computer Interface against Noise-Based and Fake P300 Cyberattacks
por: Mezzina, Giovanni, et al.
Publicado: (2021) -
Denoising Autoencoder-Based Feature Extraction to Robust SSVEP-Based BCIs
por: Chen, Yeou-Jiunn, et al.
Publicado: (2021) -
Effect of Static Posture on Online Performance of P300-Based BCIs for TV Control
por: Heo, Dojin, et al.
Publicado: (2021) -
CERN-ITRE-STOA
por: Madsen, Claus
Publicado: (2013) -
Cognitive-Based EEG BCIs and Human Brain-Robot Interactions
por: Li, Wei, et al.
Publicado: (2017)