Cargando…
Machine Learning for Predicting Mortality in Transcatheter Aortic Valve Implantation: An Inter-Center Cross Validation Study
Current prognostic risk scores for transcatheter aortic valve implantation (TAVI) do not benefit yet from modern machine learning techniques, which can improve risk stratification of one-year mortality of patients before TAVI. Despite the advancement of machine learning in healthcare, data sharing r...
Autores principales: | Mamprin, Marco, Lopes, Ricardo R., Zelis, Jo M., Tonino, Pim A. L., van Mourik, Martijn S., Vis, Marije M., Zinger, Svitlana, de Mol, Bas A. J. M., de With, Peter H. N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227005/ https://www.ncbi.nlm.nih.gov/pubmed/34199892 http://dx.doi.org/10.3390/jcdd8060065 |
Ejemplares similares
-
Decision Trees for Predicting Mortality in Transcatheter Aortic Valve Implantation
por: Mamprin, Marco, et al.
Publicado: (2021) -
Local and Distributed Machine Learning for Inter-hospital Data Utilization: An Application for TAVI Outcome Prediction
por: Lopes, Ricardo R., et al.
Publicado: (2021) -
Why Can Fractional Flow Reserve Decrease After Transcatheter Aortic Valve Implantation?
por: Zelis, Jo M., et al.
Publicado: (2020) -
Survival and quality of life after transcatheter aortic valve implantation relative to the general population
por: Zelis, Jo M., et al.
Publicado: (2020) -
Predicting hospitalisation duration after transcatheter aortic valve implantation
por: van Mourik, Martijn S, et al.
Publicado: (2017)