Cargando…

Noble Metal Organometallic Complexes Display Antiviral Activity against SARS-CoV-2

SARS-CoV-2 emerged in 2019 as a devastating viral pathogen with no available preventative or treatment to control what led to the current global pandemic. The continued spread of the virus and increasing death toll necessitate the development of effective antiviral treatments to combat this virus. T...

Descripción completa

Detalles Bibliográficos
Autores principales: Chuong, Christina, DuChane, Christine M., Webb, Emily M., Rai, Pallavi, Marano, Jeffrey M., Bernier, Chad M., Merola, Joseph S., Weger-Lucarelli, James
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227008/
https://www.ncbi.nlm.nih.gov/pubmed/34070524
http://dx.doi.org/10.3390/v13060980
Descripción
Sumario:SARS-CoV-2 emerged in 2019 as a devastating viral pathogen with no available preventative or treatment to control what led to the current global pandemic. The continued spread of the virus and increasing death toll necessitate the development of effective antiviral treatments to combat this virus. To this end, we evaluated a new class of organometallic complexes as potential antivirals. Our findings demonstrate that two pentamethylcyclopentadienyl (Cp*) rhodium piano stool complexes, Cp*Rh(1,3-dicyclohexylimidazol-2-ylidene)Cl(2) (complex 2) and Cp*Rh(dipivaloylmethanato)Cl (complex 4), have direct virucidal activity against SARS-CoV-2. Subsequent in vitro testing suggests that complex 4 is the more stable and effective complex and demonstrates that both 2 and 4 have low toxicity in Vero E6 and Calu-3 cells. The results presented here highlight the potential application of organometallic complexes as antivirals and support further investigation into their activity.