Cargando…

Effect of Multishell Diffusion MRI Acquisition Strategy and Parcellation Scale on Rich-Club Organization of Human Brain Structural Networks

The majority of network studies of human brain structural connectivity are based on single-shell diffusion-weighted imaging (DWI) data. Recent advances in imaging hardware and software capabilities have made it possible to acquire multishell (b-values) high-quality data required for better character...

Descripción completa

Detalles Bibliográficos
Autores principales: Khalilian, Maedeh, Kazemi, Kamran, Fouladivanda, Mahshid, Makki, Malek, Helfroush, Mohammad Sadegh, Aarabi, Ardalan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227047/
https://www.ncbi.nlm.nih.gov/pubmed/34072192
http://dx.doi.org/10.3390/diagnostics11060970
_version_ 1783712432396435456
author Khalilian, Maedeh
Kazemi, Kamran
Fouladivanda, Mahshid
Makki, Malek
Helfroush, Mohammad Sadegh
Aarabi, Ardalan
author_facet Khalilian, Maedeh
Kazemi, Kamran
Fouladivanda, Mahshid
Makki, Malek
Helfroush, Mohammad Sadegh
Aarabi, Ardalan
author_sort Khalilian, Maedeh
collection PubMed
description The majority of network studies of human brain structural connectivity are based on single-shell diffusion-weighted imaging (DWI) data. Recent advances in imaging hardware and software capabilities have made it possible to acquire multishell (b-values) high-quality data required for better characterization of white-matter crossing-fiber microstructures. The purpose of this study was to investigate the extent to which brain structural organization and network topology are affected by the choice of diffusion magnetic resonance imaging (MRI) acquisition strategy and parcellation scale. We performed graph-theoretical network analysis using DWI data from 35 Human Connectome Project subjects. Our study compared four single-shell (b = 1000, 3000, 5000, 10,000 s/mm(2)) and multishell sampling schemes and six parcellation scales (68, 200, 400, 600, 800, 1000 nodes) using five graph metrics, including small-worldness, clustering coefficient, characteristic path length, modularity and global efficiency. Rich-club analysis was also performed to explore the rich-club organization of brain structural networks. Our results showed that the parcellation scale and imaging protocol have significant effects on the network attributes, with the parcellation scale having a substantially larger effect. Regardless of the parcellation scale, the brain structural networks exhibited a rich-club organization with similar cortical distributions across the parcellation scales involving at least 400 nodes. Compared to single b-value diffusion acquisitions, the deterministic tractography using multishell diffusion imaging data consisting of shells with b-values higher than 5000 s/mm(2) resulted in significantly improved fiber-tracking results at the locations where fiber bundles cross each other. Brain structural networks constructed using the multishell acquisition scheme including high b-values also exhibited significantly shorter characteristic path lengths, higher global efficiency and lower modularity. Our results showed that both parcellation scale and sampling protocol can significantly impact the rich-club organization of brain structural networks. Therefore, caution should be taken concerning the reproducibility of connectivity results with regard to the parcellation scale and sampling scheme.
format Online
Article
Text
id pubmed-8227047
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-82270472021-06-26 Effect of Multishell Diffusion MRI Acquisition Strategy and Parcellation Scale on Rich-Club Organization of Human Brain Structural Networks Khalilian, Maedeh Kazemi, Kamran Fouladivanda, Mahshid Makki, Malek Helfroush, Mohammad Sadegh Aarabi, Ardalan Diagnostics (Basel) Article The majority of network studies of human brain structural connectivity are based on single-shell diffusion-weighted imaging (DWI) data. Recent advances in imaging hardware and software capabilities have made it possible to acquire multishell (b-values) high-quality data required for better characterization of white-matter crossing-fiber microstructures. The purpose of this study was to investigate the extent to which brain structural organization and network topology are affected by the choice of diffusion magnetic resonance imaging (MRI) acquisition strategy and parcellation scale. We performed graph-theoretical network analysis using DWI data from 35 Human Connectome Project subjects. Our study compared four single-shell (b = 1000, 3000, 5000, 10,000 s/mm(2)) and multishell sampling schemes and six parcellation scales (68, 200, 400, 600, 800, 1000 nodes) using five graph metrics, including small-worldness, clustering coefficient, characteristic path length, modularity and global efficiency. Rich-club analysis was also performed to explore the rich-club organization of brain structural networks. Our results showed that the parcellation scale and imaging protocol have significant effects on the network attributes, with the parcellation scale having a substantially larger effect. Regardless of the parcellation scale, the brain structural networks exhibited a rich-club organization with similar cortical distributions across the parcellation scales involving at least 400 nodes. Compared to single b-value diffusion acquisitions, the deterministic tractography using multishell diffusion imaging data consisting of shells with b-values higher than 5000 s/mm(2) resulted in significantly improved fiber-tracking results at the locations where fiber bundles cross each other. Brain structural networks constructed using the multishell acquisition scheme including high b-values also exhibited significantly shorter characteristic path lengths, higher global efficiency and lower modularity. Our results showed that both parcellation scale and sampling protocol can significantly impact the rich-club organization of brain structural networks. Therefore, caution should be taken concerning the reproducibility of connectivity results with regard to the parcellation scale and sampling scheme. MDPI 2021-05-27 /pmc/articles/PMC8227047/ /pubmed/34072192 http://dx.doi.org/10.3390/diagnostics11060970 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Khalilian, Maedeh
Kazemi, Kamran
Fouladivanda, Mahshid
Makki, Malek
Helfroush, Mohammad Sadegh
Aarabi, Ardalan
Effect of Multishell Diffusion MRI Acquisition Strategy and Parcellation Scale on Rich-Club Organization of Human Brain Structural Networks
title Effect of Multishell Diffusion MRI Acquisition Strategy and Parcellation Scale on Rich-Club Organization of Human Brain Structural Networks
title_full Effect of Multishell Diffusion MRI Acquisition Strategy and Parcellation Scale on Rich-Club Organization of Human Brain Structural Networks
title_fullStr Effect of Multishell Diffusion MRI Acquisition Strategy and Parcellation Scale on Rich-Club Organization of Human Brain Structural Networks
title_full_unstemmed Effect of Multishell Diffusion MRI Acquisition Strategy and Parcellation Scale on Rich-Club Organization of Human Brain Structural Networks
title_short Effect of Multishell Diffusion MRI Acquisition Strategy and Parcellation Scale on Rich-Club Organization of Human Brain Structural Networks
title_sort effect of multishell diffusion mri acquisition strategy and parcellation scale on rich-club organization of human brain structural networks
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227047/
https://www.ncbi.nlm.nih.gov/pubmed/34072192
http://dx.doi.org/10.3390/diagnostics11060970
work_keys_str_mv AT khalilianmaedeh effectofmultishelldiffusionmriacquisitionstrategyandparcellationscaleonrichcluborganizationofhumanbrainstructuralnetworks
AT kazemikamran effectofmultishelldiffusionmriacquisitionstrategyandparcellationscaleonrichcluborganizationofhumanbrainstructuralnetworks
AT fouladivandamahshid effectofmultishelldiffusionmriacquisitionstrategyandparcellationscaleonrichcluborganizationofhumanbrainstructuralnetworks
AT makkimalek effectofmultishelldiffusionmriacquisitionstrategyandparcellationscaleonrichcluborganizationofhumanbrainstructuralnetworks
AT helfroushmohammadsadegh effectofmultishelldiffusionmriacquisitionstrategyandparcellationscaleonrichcluborganizationofhumanbrainstructuralnetworks
AT aarabiardalan effectofmultishelldiffusionmriacquisitionstrategyandparcellationscaleonrichcluborganizationofhumanbrainstructuralnetworks