Cargando…

Molecular Characterization of Chitin Synthase Gene in Tetranychus cinnabarinus (Boisduval) and Its Response to Sublethal Concentrations of an Insecticide

SIMPLE SUMMARY: In this study, we identified chitin synthase 1 gene (TcCHS1) from Tetranychus cinnabarinus (Boisduval) and then explored the gene expression levels of TcCHS1 at different developmental stages of T. cinnabarinus. We also investigated the effects of sublethal concentrations of difluben...

Descripción completa

Detalles Bibliográficos
Autores principales: Xin, Tianrong, Li, Zhenzhen, Chen, Jia, Wang, Jing, Zou, Zhiwen, Xia, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227100/
https://www.ncbi.nlm.nih.gov/pubmed/34071207
http://dx.doi.org/10.3390/insects12060501
_version_ 1783712445088399360
author Xin, Tianrong
Li, Zhenzhen
Chen, Jia
Wang, Jing
Zou, Zhiwen
Xia, Bin
author_facet Xin, Tianrong
Li, Zhenzhen
Chen, Jia
Wang, Jing
Zou, Zhiwen
Xia, Bin
author_sort Xin, Tianrong
collection PubMed
description SIMPLE SUMMARY: In this study, we identified chitin synthase 1 gene (TcCHS1) from Tetranychus cinnabarinus (Boisduval) and then explored the gene expression levels of TcCHS1 at different developmental stages of T. cinnabarinus. We also investigated the effects of sublethal concentrations of diflubenzuron on the toxicities and survivals of T. cinnabarinus eggs and larvae as well as TcCHS1 expression levels. Our results demonstrated that TcCHS1 was essential for growth and development, and diflubenzuron exposure affected chitin metabolism. This work was undertaken to establish a foundation for further research on the functions of chitin synthase. It will provide a new target for controlling of T. cinnabarinus in the agricultural ecosystem. ABSTRACT: The carmine spider mite, Tetranychus cinnabarinus (Boisduval), is one of the most important acarine pest species. At present, its control remains primarily dependent on using various chemical insecticides/acaricides in agricultural crops worldwide. To clarify the mechanism whereby T. cinnabarinus responds to insecticide exposure, we identified the chitin synthase 1 gene (TcCHS1) and then explored the gene expression levels of TcCHS1 at different developmental stages of T. cinnabarinus. We also investigated the effects of sublethal concentrations of diflubenzuron on the toxicities and survivals of T. cinnabarinus eggs and larvae as well as TcCHS1 expression levels. The full-length cDNA sequence contains an open reading frame (ORF) of 4881 nucleotides that encoded for a 1474 amino acid residues protein. The predicted TcCHS1 protein had a molecular mass of 168.35 kDa and an isoelectric point of 6.26, and its amino acid sequence contained all the signature motifs (EDR, QRRRW and TWGTR) of chitin synthases. The results of phylogenetic analyses demonstrated that the putative CHS1 amino acid sequence of T. cinnabarinus revealed high similarities with chitin synthases in other insects and mites. Additionally, at the molecular level, transcriptional analysis by real-time quantitative PCR in different developmental stages of T. cinnabarinus revealed that TcCHS1 mRNA was expressed in all stages, and highest in eggs and female adults, but lowest in deutonymphs. Furthermore, the results of toxicity bioassays indicated that diflubenzuron treatment resulted in high mortality rates in eggs and larvae of T. cinnabarinus. The mRNA expression levels of TcCHS1 from the eggs and larvae of T. cinnabarinus were up-regulated in response to sublethal concentrations of diflubenzuron exposures. Together, all these results demonstrate that diflubenzuron has ovicidal and larvicidal effects and TcCHS1 may play an important role in the growth and development of T. cinnabarinus and may disrupt the chitin biosynthesis, thereby controlling T. cinnabarinus populations.
format Online
Article
Text
id pubmed-8227100
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-82271002021-06-26 Molecular Characterization of Chitin Synthase Gene in Tetranychus cinnabarinus (Boisduval) and Its Response to Sublethal Concentrations of an Insecticide Xin, Tianrong Li, Zhenzhen Chen, Jia Wang, Jing Zou, Zhiwen Xia, Bin Insects Article SIMPLE SUMMARY: In this study, we identified chitin synthase 1 gene (TcCHS1) from Tetranychus cinnabarinus (Boisduval) and then explored the gene expression levels of TcCHS1 at different developmental stages of T. cinnabarinus. We also investigated the effects of sublethal concentrations of diflubenzuron on the toxicities and survivals of T. cinnabarinus eggs and larvae as well as TcCHS1 expression levels. Our results demonstrated that TcCHS1 was essential for growth and development, and diflubenzuron exposure affected chitin metabolism. This work was undertaken to establish a foundation for further research on the functions of chitin synthase. It will provide a new target for controlling of T. cinnabarinus in the agricultural ecosystem. ABSTRACT: The carmine spider mite, Tetranychus cinnabarinus (Boisduval), is one of the most important acarine pest species. At present, its control remains primarily dependent on using various chemical insecticides/acaricides in agricultural crops worldwide. To clarify the mechanism whereby T. cinnabarinus responds to insecticide exposure, we identified the chitin synthase 1 gene (TcCHS1) and then explored the gene expression levels of TcCHS1 at different developmental stages of T. cinnabarinus. We also investigated the effects of sublethal concentrations of diflubenzuron on the toxicities and survivals of T. cinnabarinus eggs and larvae as well as TcCHS1 expression levels. The full-length cDNA sequence contains an open reading frame (ORF) of 4881 nucleotides that encoded for a 1474 amino acid residues protein. The predicted TcCHS1 protein had a molecular mass of 168.35 kDa and an isoelectric point of 6.26, and its amino acid sequence contained all the signature motifs (EDR, QRRRW and TWGTR) of chitin synthases. The results of phylogenetic analyses demonstrated that the putative CHS1 amino acid sequence of T. cinnabarinus revealed high similarities with chitin synthases in other insects and mites. Additionally, at the molecular level, transcriptional analysis by real-time quantitative PCR in different developmental stages of T. cinnabarinus revealed that TcCHS1 mRNA was expressed in all stages, and highest in eggs and female adults, but lowest in deutonymphs. Furthermore, the results of toxicity bioassays indicated that diflubenzuron treatment resulted in high mortality rates in eggs and larvae of T. cinnabarinus. The mRNA expression levels of TcCHS1 from the eggs and larvae of T. cinnabarinus were up-regulated in response to sublethal concentrations of diflubenzuron exposures. Together, all these results demonstrate that diflubenzuron has ovicidal and larvicidal effects and TcCHS1 may play an important role in the growth and development of T. cinnabarinus and may disrupt the chitin biosynthesis, thereby controlling T. cinnabarinus populations. MDPI 2021-05-28 /pmc/articles/PMC8227100/ /pubmed/34071207 http://dx.doi.org/10.3390/insects12060501 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Xin, Tianrong
Li, Zhenzhen
Chen, Jia
Wang, Jing
Zou, Zhiwen
Xia, Bin
Molecular Characterization of Chitin Synthase Gene in Tetranychus cinnabarinus (Boisduval) and Its Response to Sublethal Concentrations of an Insecticide
title Molecular Characterization of Chitin Synthase Gene in Tetranychus cinnabarinus (Boisduval) and Its Response to Sublethal Concentrations of an Insecticide
title_full Molecular Characterization of Chitin Synthase Gene in Tetranychus cinnabarinus (Boisduval) and Its Response to Sublethal Concentrations of an Insecticide
title_fullStr Molecular Characterization of Chitin Synthase Gene in Tetranychus cinnabarinus (Boisduval) and Its Response to Sublethal Concentrations of an Insecticide
title_full_unstemmed Molecular Characterization of Chitin Synthase Gene in Tetranychus cinnabarinus (Boisduval) and Its Response to Sublethal Concentrations of an Insecticide
title_short Molecular Characterization of Chitin Synthase Gene in Tetranychus cinnabarinus (Boisduval) and Its Response to Sublethal Concentrations of an Insecticide
title_sort molecular characterization of chitin synthase gene in tetranychus cinnabarinus (boisduval) and its response to sublethal concentrations of an insecticide
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227100/
https://www.ncbi.nlm.nih.gov/pubmed/34071207
http://dx.doi.org/10.3390/insects12060501
work_keys_str_mv AT xintianrong molecularcharacterizationofchitinsynthasegeneintetranychuscinnabarinusboisduvalanditsresponsetosublethalconcentrationsofaninsecticide
AT lizhenzhen molecularcharacterizationofchitinsynthasegeneintetranychuscinnabarinusboisduvalanditsresponsetosublethalconcentrationsofaninsecticide
AT chenjia molecularcharacterizationofchitinsynthasegeneintetranychuscinnabarinusboisduvalanditsresponsetosublethalconcentrationsofaninsecticide
AT wangjing molecularcharacterizationofchitinsynthasegeneintetranychuscinnabarinusboisduvalanditsresponsetosublethalconcentrationsofaninsecticide
AT zouzhiwen molecularcharacterizationofchitinsynthasegeneintetranychuscinnabarinusboisduvalanditsresponsetosublethalconcentrationsofaninsecticide
AT xiabin molecularcharacterizationofchitinsynthasegeneintetranychuscinnabarinusboisduvalanditsresponsetosublethalconcentrationsofaninsecticide