Cargando…

A Review of the Progress of Thin-Film Transistors and Their Technologies for Flexible Electronics

Flexible electronics enable various technologies to be integrated into daily life and fuel the quests to develop revolutionary applications, such as artificial skins, intelligent textiles, e-skin patches, and on-skin displays. Mechanical characteristics, including the total thickness and the bending...

Descripción completa

Detalles Bibliográficos
Autores principales: Mirshojaeian Hosseini, Mohammad Javad, Nawrocki, Robert A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227224/
https://www.ncbi.nlm.nih.gov/pubmed/34199683
http://dx.doi.org/10.3390/mi12060655
Descripción
Sumario:Flexible electronics enable various technologies to be integrated into daily life and fuel the quests to develop revolutionary applications, such as artificial skins, intelligent textiles, e-skin patches, and on-skin displays. Mechanical characteristics, including the total thickness and the bending radius, are of paramount importance for physically flexible electronics. However, the limitation regarding semiconductor fabrication challenges the mechanical flexibility of thin-film electronics. Thin-Film Transistors (TFTs) are a key component in thin-film electronics that restrict the flexibility of thin-film systems. Here, we provide a brief overview of the trends of the last three decades in the physical flexibility of various semiconducting technologies, including amorphous-silicon, polycrystalline silicon, oxides, carbon nanotubes, and organics. The study demonstrates the trends of the mechanical properties, including the total thickness and the bending radius, and provides a vision for the future of flexible TFTs.