Cargando…
Heparan Sulfate Proteoglycans as Attachment Factor for SARS-CoV-2
[Image: see text] Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is causing an unprecedented global pandemic demanding the urgent development of therapeutic strategies. Microarray binding experiments, using an extensive heparan sulfate (HS) oligosaccharide library, showed that...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227597/ https://www.ncbi.nlm.nih.gov/pubmed/34235261 http://dx.doi.org/10.1021/acscentsci.1c00010 |
_version_ | 1783712560035397632 |
---|---|
author | Liu, Lin Chopra, Pradeep Li, Xiuru Bouwman, Kim M. Tompkins, S. Mark Wolfert, Margreet A. de Vries, Robert P. Boons, Geert-Jan |
author_facet | Liu, Lin Chopra, Pradeep Li, Xiuru Bouwman, Kim M. Tompkins, S. Mark Wolfert, Margreet A. de Vries, Robert P. Boons, Geert-Jan |
author_sort | Liu, Lin |
collection | PubMed |
description | [Image: see text] Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is causing an unprecedented global pandemic demanding the urgent development of therapeutic strategies. Microarray binding experiments, using an extensive heparan sulfate (HS) oligosaccharide library, showed that the receptor binding domain (RBD) of the spike of SARS-CoV-2 can bind HS in a length- and sequence-dependent manner. A hexasaccharide composed of IdoA2S-GlcNS6S repeating units was identified as the minimal binding epitope. Surface plasmon resonance showed the SARS-CoV-2 spike protein binds with a much higher affinity to heparin (K(D) = 55 nM) compared to the RBD (K(D) = 1 μM) alone. It was also found that heparin does not interfere in angiotensin-converting enzyme 2 (ACE2) binding or proteolytic processing of the spike. However, exogenous administered heparin or a highly sulfated HS oligosaccharide inhibited RBD binding to cells. Furthermore, an enzymatic removal of HS proteoglycan from physiological relevant tissue resulted in a loss of RBD binding. The data support a model in which HS functions as the point of initial attachment allowing the virus to travel through the glycocalyx by low-affinity high-avidity interactions to reach the cell membrane, where it can engage with ACE2 for cell entry. Microarray binding experiments showed that ACE2 and HS can simultaneously engage with the RBD, and it is likely no dissociation between HS and RBD is required for binding to ACE2. The results highlight the potential of using HS oligosaccharides as a starting material for therapeutic agent development. |
format | Online Article Text |
id | pubmed-8227597 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-82275972021-07-06 Heparan Sulfate Proteoglycans as Attachment Factor for SARS-CoV-2 Liu, Lin Chopra, Pradeep Li, Xiuru Bouwman, Kim M. Tompkins, S. Mark Wolfert, Margreet A. de Vries, Robert P. Boons, Geert-Jan ACS Cent Sci [Image: see text] Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is causing an unprecedented global pandemic demanding the urgent development of therapeutic strategies. Microarray binding experiments, using an extensive heparan sulfate (HS) oligosaccharide library, showed that the receptor binding domain (RBD) of the spike of SARS-CoV-2 can bind HS in a length- and sequence-dependent manner. A hexasaccharide composed of IdoA2S-GlcNS6S repeating units was identified as the minimal binding epitope. Surface plasmon resonance showed the SARS-CoV-2 spike protein binds with a much higher affinity to heparin (K(D) = 55 nM) compared to the RBD (K(D) = 1 μM) alone. It was also found that heparin does not interfere in angiotensin-converting enzyme 2 (ACE2) binding or proteolytic processing of the spike. However, exogenous administered heparin or a highly sulfated HS oligosaccharide inhibited RBD binding to cells. Furthermore, an enzymatic removal of HS proteoglycan from physiological relevant tissue resulted in a loss of RBD binding. The data support a model in which HS functions as the point of initial attachment allowing the virus to travel through the glycocalyx by low-affinity high-avidity interactions to reach the cell membrane, where it can engage with ACE2 for cell entry. Microarray binding experiments showed that ACE2 and HS can simultaneously engage with the RBD, and it is likely no dissociation between HS and RBD is required for binding to ACE2. The results highlight the potential of using HS oligosaccharides as a starting material for therapeutic agent development. American Chemical Society 2021-06-02 2021-06-23 /pmc/articles/PMC8227597/ /pubmed/34235261 http://dx.doi.org/10.1021/acscentsci.1c00010 Text en © 2021 The Authors. Published by American Chemical Society Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Liu, Lin Chopra, Pradeep Li, Xiuru Bouwman, Kim M. Tompkins, S. Mark Wolfert, Margreet A. de Vries, Robert P. Boons, Geert-Jan Heparan Sulfate Proteoglycans as Attachment Factor for SARS-CoV-2 |
title | Heparan Sulfate Proteoglycans as Attachment Factor
for SARS-CoV-2 |
title_full | Heparan Sulfate Proteoglycans as Attachment Factor
for SARS-CoV-2 |
title_fullStr | Heparan Sulfate Proteoglycans as Attachment Factor
for SARS-CoV-2 |
title_full_unstemmed | Heparan Sulfate Proteoglycans as Attachment Factor
for SARS-CoV-2 |
title_short | Heparan Sulfate Proteoglycans as Attachment Factor
for SARS-CoV-2 |
title_sort | heparan sulfate proteoglycans as attachment factor
for sars-cov-2 |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227597/ https://www.ncbi.nlm.nih.gov/pubmed/34235261 http://dx.doi.org/10.1021/acscentsci.1c00010 |
work_keys_str_mv | AT liulin heparansulfateproteoglycansasattachmentfactorforsarscov2 AT choprapradeep heparansulfateproteoglycansasattachmentfactorforsarscov2 AT lixiuru heparansulfateproteoglycansasattachmentfactorforsarscov2 AT bouwmankimm heparansulfateproteoglycansasattachmentfactorforsarscov2 AT tompkinssmark heparansulfateproteoglycansasattachmentfactorforsarscov2 AT wolfertmargreeta heparansulfateproteoglycansasattachmentfactorforsarscov2 AT devriesrobertp heparansulfateproteoglycansasattachmentfactorforsarscov2 AT boonsgeertjan heparansulfateproteoglycansasattachmentfactorforsarscov2 |