Cargando…

Inhibiting Ferroptosis through Disrupting the NCOA4–FTH1 Interaction: A New Mechanism of Action

[Image: see text] Ferroptosis is an iron-dependent form of oxidative cell death, and the inhibition of ferroptosis is a promising strategy with which to prevent and treat neurological diseases. Herein we report a new ferroptosis inhibitor 9a with a novel mechanism of action. It is demonstrated that...

Descripción completa

Detalles Bibliográficos
Autores principales: Fang, Yuying, Chen, Xiucai, Tan, Qingyun, Zhou, Huihao, Xu, Jun, Gu, Qiong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227600/
https://www.ncbi.nlm.nih.gov/pubmed/34235259
http://dx.doi.org/10.1021/acscentsci.0c01592
Descripción
Sumario:[Image: see text] Ferroptosis is an iron-dependent form of oxidative cell death, and the inhibition of ferroptosis is a promising strategy with which to prevent and treat neurological diseases. Herein we report a new ferroptosis inhibitor 9a with a novel mechanism of action. It is demonstrated that nuclear receptor coactivator 4 (NCOA4), a cargo receptor for ferritinophagy, is the target of 9a. Compound 9a blocks ferroptosis by reducing the amount of bioavailable intracellular ferrous iron through disrupting the NCOA4–FTH1 protein–protein interaction. Further studies indicate that 9a directly binds to recombinant protein NCOA4(383–522) and effectively blocks the NCOA4(383–522)–FTH1 interaction. In a rat model of ischemic stroke, 9a significantly ameliorates the ischemic-refusion injury. With the first ligand 9a, this work reveals that NCOA4 is a promising drug target. Additionally, 9a is the first NCOA4–FTH1 interaction inhibitor. This work paves a new road to the development of ferroptosis inhibitors against neurological diseases.