Cargando…

Comparison of Extracapsular Stabilization Techniques Using an Ultrasonically Implanted Absorbable Bone Anchor (Weldix) after Cranial Cruciate Ligament Rupture in Cats—An In Vitro Study

SIMPLE SUMMARY: One reason for lameness in cats is the rupture of the cranial cruciate ligament. This ligament is located in the stifle joint and contributes to its stabilization during excessive forward movement and internal rotation of the tibia. One method for the surgical treatment of cranial li...

Descripción completa

Detalles Bibliográficos
Autores principales: Koch, Lydia, Bockstahler, Barbara, Tichy, Alexander, Peham, Christian, Schnabl-Feichter, Eva
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227609/
https://www.ncbi.nlm.nih.gov/pubmed/34200227
http://dx.doi.org/10.3390/ani11061695
_version_ 1783712562892767232
author Koch, Lydia
Bockstahler, Barbara
Tichy, Alexander
Peham, Christian
Schnabl-Feichter, Eva
author_facet Koch, Lydia
Bockstahler, Barbara
Tichy, Alexander
Peham, Christian
Schnabl-Feichter, Eva
author_sort Koch, Lydia
collection PubMed
description SIMPLE SUMMARY: One reason for lameness in cats is the rupture of the cranial cruciate ligament. This ligament is located in the stifle joint and contributes to its stabilization during excessive forward movement and internal rotation of the tibia. One method for the surgical treatment of cranial ligament rupture is the placement of an extracapsular suture. Different materials and methods of suture fixation have been used in dogs and cats. This study investigated the use of a novel polylactide absorbable bone anchor that was implanted with ultrasound technology for suture fixation and compared this with suture fixation alone and fixation with a nonabsorbable bone anchor using an ex vivo modified limb-press model. For evaluation, distance measurements on radiographs were performed and the angles between defined bony structures were calculated. The acquired measurements accounted for both craniocaudal and mediolateral movements, and the results showed that the absorbable anchor could neutralize excessive movement within the stifle joint in two of three measurements and seems to be a good alternative to well-known surgical methods. ABSTRACT: Background: This study evaluated joint stability after surgical repair of cranial cruciate ligament (CrCL)-deficient stifle joints in cats using a novel absorbable polylactide bone anchor in an ex vivo model. Methods: Thirty-six hindlimbs from cats with intact (G(i) group) and transected CrCLs were treated with fabellotibial suture alone (G(FW) group), suture combined with an absorbable polylactide bone anchor (G(WD) group), or suture combined with a nonabsorbable bone anchor (G(FT) group), positioned in a limb press with predefined joint angles (stifle joint: 120 ± 5°; hock joint: 120 ± 5°) and loaded with 10%, 20%, and 30% of body mass (BM). Predefined points were measured on lateral radiographs and with a coordinate measurement machine. Distances on radiographs (mm) were measured and angles (°) were calculated to represent the craniocaudal movement and the internal rotation of the tibia. Results: There were no differences for craniocaudal movement between G(i) and G(FW) or G(FT), but for G(WD) regarding angle measurement at 30% BM. For internal rotation, there was no significant difference between G(i) and G(FW) or G(WD), but for G(FT). Conclusion: The used absorbable polylactide bone-anchor was able to stabilize the stifle joint regarding internal rotation and craniocaudal movement as calculated from distance measurements.
format Online
Article
Text
id pubmed-8227609
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-82276092021-06-26 Comparison of Extracapsular Stabilization Techniques Using an Ultrasonically Implanted Absorbable Bone Anchor (Weldix) after Cranial Cruciate Ligament Rupture in Cats—An In Vitro Study Koch, Lydia Bockstahler, Barbara Tichy, Alexander Peham, Christian Schnabl-Feichter, Eva Animals (Basel) Article SIMPLE SUMMARY: One reason for lameness in cats is the rupture of the cranial cruciate ligament. This ligament is located in the stifle joint and contributes to its stabilization during excessive forward movement and internal rotation of the tibia. One method for the surgical treatment of cranial ligament rupture is the placement of an extracapsular suture. Different materials and methods of suture fixation have been used in dogs and cats. This study investigated the use of a novel polylactide absorbable bone anchor that was implanted with ultrasound technology for suture fixation and compared this with suture fixation alone and fixation with a nonabsorbable bone anchor using an ex vivo modified limb-press model. For evaluation, distance measurements on radiographs were performed and the angles between defined bony structures were calculated. The acquired measurements accounted for both craniocaudal and mediolateral movements, and the results showed that the absorbable anchor could neutralize excessive movement within the stifle joint in two of three measurements and seems to be a good alternative to well-known surgical methods. ABSTRACT: Background: This study evaluated joint stability after surgical repair of cranial cruciate ligament (CrCL)-deficient stifle joints in cats using a novel absorbable polylactide bone anchor in an ex vivo model. Methods: Thirty-six hindlimbs from cats with intact (G(i) group) and transected CrCLs were treated with fabellotibial suture alone (G(FW) group), suture combined with an absorbable polylactide bone anchor (G(WD) group), or suture combined with a nonabsorbable bone anchor (G(FT) group), positioned in a limb press with predefined joint angles (stifle joint: 120 ± 5°; hock joint: 120 ± 5°) and loaded with 10%, 20%, and 30% of body mass (BM). Predefined points were measured on lateral radiographs and with a coordinate measurement machine. Distances on radiographs (mm) were measured and angles (°) were calculated to represent the craniocaudal movement and the internal rotation of the tibia. Results: There were no differences for craniocaudal movement between G(i) and G(FW) or G(FT), but for G(WD) regarding angle measurement at 30% BM. For internal rotation, there was no significant difference between G(i) and G(FW) or G(WD), but for G(FT). Conclusion: The used absorbable polylactide bone-anchor was able to stabilize the stifle joint regarding internal rotation and craniocaudal movement as calculated from distance measurements. MDPI 2021-06-07 /pmc/articles/PMC8227609/ /pubmed/34200227 http://dx.doi.org/10.3390/ani11061695 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Koch, Lydia
Bockstahler, Barbara
Tichy, Alexander
Peham, Christian
Schnabl-Feichter, Eva
Comparison of Extracapsular Stabilization Techniques Using an Ultrasonically Implanted Absorbable Bone Anchor (Weldix) after Cranial Cruciate Ligament Rupture in Cats—An In Vitro Study
title Comparison of Extracapsular Stabilization Techniques Using an Ultrasonically Implanted Absorbable Bone Anchor (Weldix) after Cranial Cruciate Ligament Rupture in Cats—An In Vitro Study
title_full Comparison of Extracapsular Stabilization Techniques Using an Ultrasonically Implanted Absorbable Bone Anchor (Weldix) after Cranial Cruciate Ligament Rupture in Cats—An In Vitro Study
title_fullStr Comparison of Extracapsular Stabilization Techniques Using an Ultrasonically Implanted Absorbable Bone Anchor (Weldix) after Cranial Cruciate Ligament Rupture in Cats—An In Vitro Study
title_full_unstemmed Comparison of Extracapsular Stabilization Techniques Using an Ultrasonically Implanted Absorbable Bone Anchor (Weldix) after Cranial Cruciate Ligament Rupture in Cats—An In Vitro Study
title_short Comparison of Extracapsular Stabilization Techniques Using an Ultrasonically Implanted Absorbable Bone Anchor (Weldix) after Cranial Cruciate Ligament Rupture in Cats—An In Vitro Study
title_sort comparison of extracapsular stabilization techniques using an ultrasonically implanted absorbable bone anchor (weldix) after cranial cruciate ligament rupture in cats—an in vitro study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227609/
https://www.ncbi.nlm.nih.gov/pubmed/34200227
http://dx.doi.org/10.3390/ani11061695
work_keys_str_mv AT kochlydia comparisonofextracapsularstabilizationtechniquesusinganultrasonicallyimplantedabsorbableboneanchorweldixaftercranialcruciateligamentruptureincatsaninvitrostudy
AT bockstahlerbarbara comparisonofextracapsularstabilizationtechniquesusinganultrasonicallyimplantedabsorbableboneanchorweldixaftercranialcruciateligamentruptureincatsaninvitrostudy
AT tichyalexander comparisonofextracapsularstabilizationtechniquesusinganultrasonicallyimplantedabsorbableboneanchorweldixaftercranialcruciateligamentruptureincatsaninvitrostudy
AT pehamchristian comparisonofextracapsularstabilizationtechniquesusinganultrasonicallyimplantedabsorbableboneanchorweldixaftercranialcruciateligamentruptureincatsaninvitrostudy
AT schnablfeichtereva comparisonofextracapsularstabilizationtechniquesusinganultrasonicallyimplantedabsorbableboneanchorweldixaftercranialcruciateligamentruptureincatsaninvitrostudy