Cargando…
A Multiomic Approach to Understand How Pleurotus eryngii Transforms Non-Woody Lignocellulosic Material
Pleurotus eryngii is a grassland-inhabiting fungus of biotechnological interest due to its ability to colonize non-woody lignocellulosic material. Genomic, transcriptomic, exoproteomic, and metabolomic analyses were combined to explain the enzymatic aspects underlaying wheat–straw transformation. Up...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227661/ https://www.ncbi.nlm.nih.gov/pubmed/34071235 http://dx.doi.org/10.3390/jof7060426 |
_version_ | 1783712575155863552 |
---|---|
author | Peña, Ander Babiker, Rashid Chaduli, Delphine Lipzen, Anna Wang, Mei Chovatia, Mansi Rencoret, Jorge Marques, Gisela Sánchez-Ruiz, María Isabel Kijpornyongpan, Teeratas Salvachúa, Davinia Camarero, Susana Ng, Vivian Gutiérrez, Ana Grigoriev, Igor V. Rosso, Marie-Noëlle Martínez, Angel T. Ruiz-Dueñas, Francisco J. |
author_facet | Peña, Ander Babiker, Rashid Chaduli, Delphine Lipzen, Anna Wang, Mei Chovatia, Mansi Rencoret, Jorge Marques, Gisela Sánchez-Ruiz, María Isabel Kijpornyongpan, Teeratas Salvachúa, Davinia Camarero, Susana Ng, Vivian Gutiérrez, Ana Grigoriev, Igor V. Rosso, Marie-Noëlle Martínez, Angel T. Ruiz-Dueñas, Francisco J. |
author_sort | Peña, Ander |
collection | PubMed |
description | Pleurotus eryngii is a grassland-inhabiting fungus of biotechnological interest due to its ability to colonize non-woody lignocellulosic material. Genomic, transcriptomic, exoproteomic, and metabolomic analyses were combined to explain the enzymatic aspects underlaying wheat–straw transformation. Up-regulated and constitutive glycoside–hydrolases, polysaccharide–lyases, and carbohydrate–esterases active on polysaccharides, laccases active on lignin, and a surprisingly high amount of constitutive/inducible aryl–alcohol oxidases (AAOs) constituted the suite of extracellular enzymes at early fungal growth. Higher enzyme diversity and abundance characterized the longer-term growth, with an array of oxidoreductases involved in depolymerization of both cellulose and lignin, which were often up-regulated since initial growth. These oxidative enzymes included lytic polysaccharide monooxygenases (LPMOs) acting on crystalline polysaccharides, cellobiose dehydrogenase involved in LPMO activation, and ligninolytic peroxidases (mainly manganese-oxidizing peroxidases), together with highly abundant H(2)O(2)-producing AAOs. Interestingly, some of the most relevant enzymes acting on polysaccharides were appended to a cellulose-binding module. This is potentially related to the non-woody habitat of P. eryngii (in contrast to the wood habitat of many basidiomycetes). Additionally, insights into the intracellular catabolism of aromatic compounds, which is a neglected area of study in lignin degradation by basidiomycetes, were also provided. The multiomic approach reveals that although non-woody decay does not result in dramatic modifications, as revealed by detailed 2D-NMR and other analyses, it implies activation of the complete set of hydrolytic and oxidative enzymes characterizing lignocellulose-decaying basidiomycetes. |
format | Online Article Text |
id | pubmed-8227661 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82276612021-06-26 A Multiomic Approach to Understand How Pleurotus eryngii Transforms Non-Woody Lignocellulosic Material Peña, Ander Babiker, Rashid Chaduli, Delphine Lipzen, Anna Wang, Mei Chovatia, Mansi Rencoret, Jorge Marques, Gisela Sánchez-Ruiz, María Isabel Kijpornyongpan, Teeratas Salvachúa, Davinia Camarero, Susana Ng, Vivian Gutiérrez, Ana Grigoriev, Igor V. Rosso, Marie-Noëlle Martínez, Angel T. Ruiz-Dueñas, Francisco J. J Fungi (Basel) Article Pleurotus eryngii is a grassland-inhabiting fungus of biotechnological interest due to its ability to colonize non-woody lignocellulosic material. Genomic, transcriptomic, exoproteomic, and metabolomic analyses were combined to explain the enzymatic aspects underlaying wheat–straw transformation. Up-regulated and constitutive glycoside–hydrolases, polysaccharide–lyases, and carbohydrate–esterases active on polysaccharides, laccases active on lignin, and a surprisingly high amount of constitutive/inducible aryl–alcohol oxidases (AAOs) constituted the suite of extracellular enzymes at early fungal growth. Higher enzyme diversity and abundance characterized the longer-term growth, with an array of oxidoreductases involved in depolymerization of both cellulose and lignin, which were often up-regulated since initial growth. These oxidative enzymes included lytic polysaccharide monooxygenases (LPMOs) acting on crystalline polysaccharides, cellobiose dehydrogenase involved in LPMO activation, and ligninolytic peroxidases (mainly manganese-oxidizing peroxidases), together with highly abundant H(2)O(2)-producing AAOs. Interestingly, some of the most relevant enzymes acting on polysaccharides were appended to a cellulose-binding module. This is potentially related to the non-woody habitat of P. eryngii (in contrast to the wood habitat of many basidiomycetes). Additionally, insights into the intracellular catabolism of aromatic compounds, which is a neglected area of study in lignin degradation by basidiomycetes, were also provided. The multiomic approach reveals that although non-woody decay does not result in dramatic modifications, as revealed by detailed 2D-NMR and other analyses, it implies activation of the complete set of hydrolytic and oxidative enzymes characterizing lignocellulose-decaying basidiomycetes. MDPI 2021-05-28 /pmc/articles/PMC8227661/ /pubmed/34071235 http://dx.doi.org/10.3390/jof7060426 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Peña, Ander Babiker, Rashid Chaduli, Delphine Lipzen, Anna Wang, Mei Chovatia, Mansi Rencoret, Jorge Marques, Gisela Sánchez-Ruiz, María Isabel Kijpornyongpan, Teeratas Salvachúa, Davinia Camarero, Susana Ng, Vivian Gutiérrez, Ana Grigoriev, Igor V. Rosso, Marie-Noëlle Martínez, Angel T. Ruiz-Dueñas, Francisco J. A Multiomic Approach to Understand How Pleurotus eryngii Transforms Non-Woody Lignocellulosic Material |
title | A Multiomic Approach to Understand How Pleurotus eryngii Transforms Non-Woody Lignocellulosic Material |
title_full | A Multiomic Approach to Understand How Pleurotus eryngii Transforms Non-Woody Lignocellulosic Material |
title_fullStr | A Multiomic Approach to Understand How Pleurotus eryngii Transforms Non-Woody Lignocellulosic Material |
title_full_unstemmed | A Multiomic Approach to Understand How Pleurotus eryngii Transforms Non-Woody Lignocellulosic Material |
title_short | A Multiomic Approach to Understand How Pleurotus eryngii Transforms Non-Woody Lignocellulosic Material |
title_sort | multiomic approach to understand how pleurotus eryngii transforms non-woody lignocellulosic material |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227661/ https://www.ncbi.nlm.nih.gov/pubmed/34071235 http://dx.doi.org/10.3390/jof7060426 |
work_keys_str_mv | AT penaander amultiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT babikerrashid amultiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT chadulidelphine amultiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT lipzenanna amultiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT wangmei amultiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT chovatiamansi amultiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT rencoretjorge amultiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT marquesgisela amultiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT sanchezruizmariaisabel amultiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT kijpornyongpanteeratas amultiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT salvachuadavinia amultiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT camarerosusana amultiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT ngvivian amultiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT gutierrezana amultiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT grigorievigorv amultiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT rossomarienoelle amultiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT martinezangelt amultiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT ruizduenasfranciscoj amultiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT penaander multiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT babikerrashid multiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT chadulidelphine multiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT lipzenanna multiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT wangmei multiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT chovatiamansi multiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT rencoretjorge multiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT marquesgisela multiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT sanchezruizmariaisabel multiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT kijpornyongpanteeratas multiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT salvachuadavinia multiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT camarerosusana multiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT ngvivian multiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT gutierrezana multiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT grigorievigorv multiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT rossomarienoelle multiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT martinezangelt multiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial AT ruizduenasfranciscoj multiomicapproachtounderstandhowpleurotuseryngiitransformsnonwoodylignocellulosicmaterial |