Cargando…
Development of CO(2)-Selective Polyimide-Based Gas Separation Membranes Using Crown Ether and Polydimethylsiloxane
A series of CO(2)-selective polyimides (CE-PDMS-PI-x) was synthesized by copolymerizing crown ether diamine (trans-diamino-DB18C6) and PDMS-diamine with 4,4′-(hexafluoroisopropylidene) di-phthalic anhydride (6FDA) through the polycondensation reaction. The structural characteristics of the copolymer...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227709/ https://www.ncbi.nlm.nih.gov/pubmed/34200603 http://dx.doi.org/10.3390/polym13121927 |
Sumario: | A series of CO(2)-selective polyimides (CE-PDMS-PI-x) was synthesized by copolymerizing crown ether diamine (trans-diamino-DB18C6) and PDMS-diamine with 4,4′-(hexafluoroisopropylidene) di-phthalic anhydride (6FDA) through the polycondensation reaction. The structural characteristics of the copolymers and corresponding membranes were characterized by nuclear magnetic resonance (NMR), infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and gel permeation chromatography (GPC). The effect of PDMS loading on the CE-PDMS-PI-x copolymers was further analyzed and a very good structure–property relationship was found. A well-distributed soft PDMS unit played a key role in the membrane’s morphology, in which improved CO(2)-separation performance was observed at a low PDMS content (5 wt %). In contrast, the fine-grained phase separation adversely affected the separation behavior at a certain level of PDMS loading, and the PDMS was found to provide a flexible gas-diffusion path, affecting only the permeability without changing the selective gas-separation performance for the copolymers with a PDMS content of 20% or above. |
---|