Cargando…
Accuracy of a Machine-Learning Algorithm for Detecting and Classifying Choroidal Neovascularization on Spectral-Domain Optical Coherence Tomography
Background: To evaluate the performance of a machine-learning (ML) algorithm to detect and classify choroidal neovascularization (CNV), secondary to age-related macular degeneration (AMD) on spectral-domain optical coherence tomography (SD-OCT) images. Methods: Baseline fluorescein angiography (FA)...
Autores principales: | Maunz, Andreas, Benmansour, Fethallah, Li, Yvonna, Albrecht, Thomas, Zhang, Yan-Ping, Arcadu, Filippo, Zheng, Yalin, Madhusudhan, Savita, Sahni, Jayashree |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227725/ https://www.ncbi.nlm.nih.gov/pubmed/34201045 http://dx.doi.org/10.3390/jpm11060524 |
Ejemplares similares
-
Deep learning algorithm predicts diabetic retinopathy progression in individual patients
por: Arcadu, Filippo, et al.
Publicado: (2019) -
Author Correction: Deep learning algorithm predicts diabetic retinopathy progression in individual patients
por: Arcadu, Filippo, et al.
Publicado: (2020) -
Spectral domain-optical coherence tomography retinal biomarkers in choroidal neovascularization of multifocal choroiditis, myopic choroidal neovascularization, and idiopathic choroidal neovascularization
por: Gao, Rui, et al.
Publicado: (2021) -
Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization
por: Miller, Andrew R., et al.
Publicado: (2017) -
Machine Learning to Predict Response to Ranibizumab in Neovascular Age-Related Macular Degeneration
por: Maunz, Andreas, et al.
Publicado: (2023)