Cargando…
On Representations of Divergence Measures and Related Quantities in Exponential Families
Within exponential families, which may consist of multi-parameter and multivariate distributions, a variety of divergence measures, such as the Kullback–Leibler divergence, the Cressie–Read divergence, the Rényi divergence, and the Hellinger metric, can be explicitly expressed in terms of the respec...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227757/ https://www.ncbi.nlm.nih.gov/pubmed/34201023 http://dx.doi.org/10.3390/e23060726 |
Sumario: | Within exponential families, which may consist of multi-parameter and multivariate distributions, a variety of divergence measures, such as the Kullback–Leibler divergence, the Cressie–Read divergence, the Rényi divergence, and the Hellinger metric, can be explicitly expressed in terms of the respective cumulant function and mean value function. Moreover, the same applies to related entropy and affinity measures. We compile representations scattered in the literature and present a unified approach to the derivation in exponential families. As a statistical application, we highlight their use in the construction of confidence regions in a multi-sample setup. |
---|