Cargando…

Altered Blood Levels of Anti-Gal Antibodies in Alzheimer’s Disease: A New Clue to Pathogenesis?

Alzheimer’s disease is a neurodegenerative disorder whose pathological mechanisms, despite recent advances, are not fully understood. However, the deposition of beta amyloid -peptide and neuroinflammation, which is probably aggravated by dysbiotic microbiota, seem to play a key role. Anti-Gal are th...

Descripción completa

Detalles Bibliográficos
Autores principales: Angiolillo, Antonella, Gandaglia, Alessandro, Arcaro, Alessia, Carpi, Andrea, Gentile, Fabrizio, Naso, Filippo, Di Costanzo, Alfonso
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228012/
https://www.ncbi.nlm.nih.gov/pubmed/34207559
http://dx.doi.org/10.3390/life11060538
Descripción
Sumario:Alzheimer’s disease is a neurodegenerative disorder whose pathological mechanisms, despite recent advances, are not fully understood. However, the deposition of beta amyloid -peptide and neuroinflammation, which is probably aggravated by dysbiotic microbiota, seem to play a key role. Anti-Gal are the most abundant xenoreactive natural antibodies. They are supposed to stem from immunization against the gut microbiota and have been implicated in the pathogenesis of several diseases, including multiple sclerosis. These antibodies target the alpha-Gal epitope, expressed on the terminal sugar units of glycoprotein or glycolipid of all mammals except apes, Old World monkeys and humans. The alpha-Gal is constitutively expressed in several bacteria constituting the brain microbiota, and alpha-Gal-like epitopes have been detected in gray matter, amyloid plaque, neurofibrillary tangles and corpora amylacea of the human brain, suggesting a potential link between anti-Gal and Alzheimer’s disease etiopathogenesis. For the first time, our study searched for possible alterations of anti-Gal immunoglobulin levels in Alzheimer’s disease patients. IgG and IgM blood levels were significantly lower, and IgA significantly higher in patients than in healthy subjects. These results suggest that such immunoglobulins might be implicated in Alzheimer’s disease pathogenesis and open new scenarios in the research for new biomarkers and therapeutic strategies.