Cargando…

Disparate Metabolomic Responses to Fructose Consumption between Different Mouse Strains and the Role of Gut Microbiota

High fructose consumption has been linked to metabolic syndrome, yet the fructose-induced phenotypes, gene expression, and gut microbiota alterations are distinct between mouse strains. In this study, we aim to investigate how fructose consumption shapes the metabolomic profiles of mice with differe...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahn, In-Sook, Yoon, Justin, Diamante, Graciel, Cohn, Peter, Jang, Cholsoon, Yang, Xia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228112/
https://www.ncbi.nlm.nih.gov/pubmed/34073358
http://dx.doi.org/10.3390/metabo11060342
Descripción
Sumario:High fructose consumption has been linked to metabolic syndrome, yet the fructose-induced phenotypes, gene expression, and gut microbiota alterations are distinct between mouse strains. In this study, we aim to investigate how fructose consumption shapes the metabolomic profiles of mice with different genetic background and microbiome. We used fructose-sensitive DBA/2J (DBA) and fructose-resistant C57BL/6J (B6) mice given 8% fructose or regular water for 12 weeks. Plasma and fecal metabolites were profiled using a liquid chromatography-tandem mass spectrometry based global metabolomic approach. We found that the baseline metabolomic profiles were different between DBA and B6 mice, particularly plasma metabolites involved in lipid metabolism and fecal metabolites related to dipeptide/amino acid metabolism. In response to fructose, DBA mice showed a distinct decrease of plasma branched chain fatty acids with concordantly increased branched chain amino acids, which were correlated with adiposity; B6 mice had significantly increased plasma cholesterol and total bile acids, accompanied by decreased fecal levels of farnesoid X receptor antagonist tauro-β-muricholate, which were correlated with fructose-responsive bacteria Dehalobacterium, Magibacteriaceae, and/or Akkermansia. Our results demonstrate that baseline metabolomic profiles differ and respond differentially to fructose between mice with different genetic background and gut microbiota, which may play a role in individualized risks to fructose-induced metabolic syndrome.