Cargando…

Thermal, Spectroscopy and Luminescent Characterization of Hybrid PMMA/Lanthanide Complex Materials

Novel hybrid materials based on the poly(methyl methacrylate) (PMMA) matrix and lanthanide(III) carboxylates Eu:2,6-DClB and Tb:2,6-DClB were synthesized and carefully analyzed in the context of their potential application in optically active polymer-based optical fibers. To determine the usefulness...

Descripción completa

Detalles Bibliográficos
Autores principales: Gil-Kowalczyk, Małgorzata, Łyszczek, Renata, Jusza, Anna, Piramidowicz, Ryszard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228247/
https://www.ncbi.nlm.nih.gov/pubmed/34201278
http://dx.doi.org/10.3390/ma14123156
Descripción
Sumario:Novel hybrid materials based on the poly(methyl methacrylate) (PMMA) matrix and lanthanide(III) carboxylates Eu:2,6-DClB and Tb:2,6-DClB were synthesized and carefully analyzed in the context of their potential application in optically active polymer-based optical fibers. To determine the usefulness of the obtained materials, a careful thermal, mass spectroscopy, and optical characterization was performed, focusing on the features critical for the technology of optical fiber processing. In addition, the luminescent features of both lanthanide complexes and the resulting hybrid composites were carefully investigated to identify the processes responsible for light emission and to analyze the influence of the PMMA host on light emission intensity and spectral characteristics. The obtained results showed that both lanthanide carboxylate complexes exhibited intense luminescence in the red and green spectral range, typical of europium and terbium dopants, and that those features were well preserved after introducing them into the PMMA polymer. Thermal analysis also proved that introducing the luminescent additives did not significantly affect the thermal properties of both hybrid materials, thus enabling further processing into the form of optical fibers.