Cargando…

Fucosylated Proteome Profiling Identifies a Fucosylated, Non-Ribosomal, Stress-Responsive Species of Ribosomal Protein S3

SIMPLE SUMMARY: Dysregulated fucosylation has been characterized as an underlying cause or a contributor to the pathogenesis of several disease states. However, to date, there is not a clear understanding of how and what proteins, signaling pathways, and cellular processes are impacted by fucosylati...

Descripción completa

Detalles Bibliográficos
Autores principales: Watson, Gregory, Lester, Daniel, Ren, Hui, Forsyth, Connor M., Medina, Elliot, Gonzalez Perez, David, Darville, Lancia, Yao, Jiqiang, Luca, Vince, Koomen, John, Cen, Ling, Lau, Eric
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228307/
https://www.ncbi.nlm.nih.gov/pubmed/34070332
http://dx.doi.org/10.3390/cells10061310
_version_ 1783712712439627776
author Watson, Gregory
Lester, Daniel
Ren, Hui
Forsyth, Connor M.
Medina, Elliot
Gonzalez Perez, David
Darville, Lancia
Yao, Jiqiang
Luca, Vince
Koomen, John
Cen, Ling
Lau, Eric
author_facet Watson, Gregory
Lester, Daniel
Ren, Hui
Forsyth, Connor M.
Medina, Elliot
Gonzalez Perez, David
Darville, Lancia
Yao, Jiqiang
Luca, Vince
Koomen, John
Cen, Ling
Lau, Eric
author_sort Watson, Gregory
collection PubMed
description SIMPLE SUMMARY: Dysregulated fucosylation has been characterized as an underlying cause or a contributor to the pathogenesis of several disease states. However, to date, there is not a clear understanding of how and what proteins, signaling pathways, and cellular processes are impacted by fucosylation. Here, we characterized the proteins recognized by a fucose-binding lectin and unexpectedly discovered that many intracellular proteins are putatively subject to posttranslational fucosylation. We further found that fucosylation on intracellular ribosomal protein S3 responds to stimulus, and that it appears to be independent of the currently characterized fucosylation pathway. This work suggests a to-date-underappreciated role for fucosylation on intracellular proteins and supports the existence of fucosylation capabilities within cells that is not fully known. ABSTRACT: Alterations in genes encoding for proteins that control fucosylation are known to play causative roles in several developmental disorders, such as Dowling-Degos disease 2 and congenital disorder of glycosylation type IIc (CDGIIc). Recent studies have provided evidence that changes in fucosylation can contribute to the development and progression of several different types of cancers. It is therefore important to gain a detailed understanding of how fucosylation is altered in disease states so that interventions may be developed for therapeutic purposes. In this report, we find that fucosylation occurs on many intracellular proteins. This is an interesting finding, as the fucosylation machinery is restricted to the secretory pathway and is thought to predominately affect cell-membrane-bound and secreted proteins. We find that Ribosomal protein S3 (RPS3) is fucosylated in normal tissues and in cancer cells, and that the extent of its fucosylation appears to respond to stress, including MAPK inhibitors, suggesting a new role in posttranslational protein function. Our data identify a new ribosome-independent species of fucosylated RPS3 that interacts with proteins involved in posttranscriptional regulation of RNA, such as Heterogeneous nuclear ribonucleoprotein U (HNRNPU), as well as with a predominance of non-coding RNAs. These data highlight a novel role for RPS3, which, given previously reported oncogenic roles for RPS3, might represent functions that are perturbed in pathologies such as cancer. Together, our findings suggest a previously unrecognized role for fucosylation in directly influencing intracellular protein functions.
format Online
Article
Text
id pubmed-8228307
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-82283072021-06-26 Fucosylated Proteome Profiling Identifies a Fucosylated, Non-Ribosomal, Stress-Responsive Species of Ribosomal Protein S3 Watson, Gregory Lester, Daniel Ren, Hui Forsyth, Connor M. Medina, Elliot Gonzalez Perez, David Darville, Lancia Yao, Jiqiang Luca, Vince Koomen, John Cen, Ling Lau, Eric Cells Article SIMPLE SUMMARY: Dysregulated fucosylation has been characterized as an underlying cause or a contributor to the pathogenesis of several disease states. However, to date, there is not a clear understanding of how and what proteins, signaling pathways, and cellular processes are impacted by fucosylation. Here, we characterized the proteins recognized by a fucose-binding lectin and unexpectedly discovered that many intracellular proteins are putatively subject to posttranslational fucosylation. We further found that fucosylation on intracellular ribosomal protein S3 responds to stimulus, and that it appears to be independent of the currently characterized fucosylation pathway. This work suggests a to-date-underappreciated role for fucosylation on intracellular proteins and supports the existence of fucosylation capabilities within cells that is not fully known. ABSTRACT: Alterations in genes encoding for proteins that control fucosylation are known to play causative roles in several developmental disorders, such as Dowling-Degos disease 2 and congenital disorder of glycosylation type IIc (CDGIIc). Recent studies have provided evidence that changes in fucosylation can contribute to the development and progression of several different types of cancers. It is therefore important to gain a detailed understanding of how fucosylation is altered in disease states so that interventions may be developed for therapeutic purposes. In this report, we find that fucosylation occurs on many intracellular proteins. This is an interesting finding, as the fucosylation machinery is restricted to the secretory pathway and is thought to predominately affect cell-membrane-bound and secreted proteins. We find that Ribosomal protein S3 (RPS3) is fucosylated in normal tissues and in cancer cells, and that the extent of its fucosylation appears to respond to stress, including MAPK inhibitors, suggesting a new role in posttranslational protein function. Our data identify a new ribosome-independent species of fucosylated RPS3 that interacts with proteins involved in posttranscriptional regulation of RNA, such as Heterogeneous nuclear ribonucleoprotein U (HNRNPU), as well as with a predominance of non-coding RNAs. These data highlight a novel role for RPS3, which, given previously reported oncogenic roles for RPS3, might represent functions that are perturbed in pathologies such as cancer. Together, our findings suggest a previously unrecognized role for fucosylation in directly influencing intracellular protein functions. MDPI 2021-05-25 /pmc/articles/PMC8228307/ /pubmed/34070332 http://dx.doi.org/10.3390/cells10061310 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Watson, Gregory
Lester, Daniel
Ren, Hui
Forsyth, Connor M.
Medina, Elliot
Gonzalez Perez, David
Darville, Lancia
Yao, Jiqiang
Luca, Vince
Koomen, John
Cen, Ling
Lau, Eric
Fucosylated Proteome Profiling Identifies a Fucosylated, Non-Ribosomal, Stress-Responsive Species of Ribosomal Protein S3
title Fucosylated Proteome Profiling Identifies a Fucosylated, Non-Ribosomal, Stress-Responsive Species of Ribosomal Protein S3
title_full Fucosylated Proteome Profiling Identifies a Fucosylated, Non-Ribosomal, Stress-Responsive Species of Ribosomal Protein S3
title_fullStr Fucosylated Proteome Profiling Identifies a Fucosylated, Non-Ribosomal, Stress-Responsive Species of Ribosomal Protein S3
title_full_unstemmed Fucosylated Proteome Profiling Identifies a Fucosylated, Non-Ribosomal, Stress-Responsive Species of Ribosomal Protein S3
title_short Fucosylated Proteome Profiling Identifies a Fucosylated, Non-Ribosomal, Stress-Responsive Species of Ribosomal Protein S3
title_sort fucosylated proteome profiling identifies a fucosylated, non-ribosomal, stress-responsive species of ribosomal protein s3
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228307/
https://www.ncbi.nlm.nih.gov/pubmed/34070332
http://dx.doi.org/10.3390/cells10061310
work_keys_str_mv AT watsongregory fucosylatedproteomeprofilingidentifiesafucosylatednonribosomalstressresponsivespeciesofribosomalproteins3
AT lesterdaniel fucosylatedproteomeprofilingidentifiesafucosylatednonribosomalstressresponsivespeciesofribosomalproteins3
AT renhui fucosylatedproteomeprofilingidentifiesafucosylatednonribosomalstressresponsivespeciesofribosomalproteins3
AT forsythconnorm fucosylatedproteomeprofilingidentifiesafucosylatednonribosomalstressresponsivespeciesofribosomalproteins3
AT medinaelliot fucosylatedproteomeprofilingidentifiesafucosylatednonribosomalstressresponsivespeciesofribosomalproteins3
AT gonzalezperezdavid fucosylatedproteomeprofilingidentifiesafucosylatednonribosomalstressresponsivespeciesofribosomalproteins3
AT darvillelancia fucosylatedproteomeprofilingidentifiesafucosylatednonribosomalstressresponsivespeciesofribosomalproteins3
AT yaojiqiang fucosylatedproteomeprofilingidentifiesafucosylatednonribosomalstressresponsivespeciesofribosomalproteins3
AT lucavince fucosylatedproteomeprofilingidentifiesafucosylatednonribosomalstressresponsivespeciesofribosomalproteins3
AT koomenjohn fucosylatedproteomeprofilingidentifiesafucosylatednonribosomalstressresponsivespeciesofribosomalproteins3
AT cenling fucosylatedproteomeprofilingidentifiesafucosylatednonribosomalstressresponsivespeciesofribosomalproteins3
AT laueric fucosylatedproteomeprofilingidentifiesafucosylatednonribosomalstressresponsivespeciesofribosomalproteins3