Cargando…
Analysis and Validation of Cross-Modal Generative Adversarial Network for Sensory Substitution
Visual-auditory sensory substitution has demonstrated great potential to help visually impaired and blind groups to recognize objects and to perform basic navigational tasks. However, the high latency between visual information acquisition and auditory transduction may contribute to the lack of the...
Autores principales: | Kim, Mooseop, Park, YunKyung, Moon, KyeongDeok, Jeong, Chi Yoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228544/ https://www.ncbi.nlm.nih.gov/pubmed/34201269 http://dx.doi.org/10.3390/ijerph18126216 |
Ejemplares similares
-
Accelerating On-Device Learning with Layer-Wise Processor Selection Method on Unified Memory
por: Ha, Donghee, et al.
Publicado: (2021) -
Depth Map Upsampling via Multi-Modal Generative Adversarial Network
por: Tan, Daniel Stanley, et al.
Publicado: (2019) -
Research on the Modality Transfer Method of Brain Imaging Based on Generative Adversarial Network
por: Cheng, Dapeng, et al.
Publicado: (2021) -
Review of Generative Adversarial Networks in mono- and cross-modal biomedical image registration
por: Han, Tingting, et al.
Publicado: (2022) -
Generative adversarial network for automatic quantification of Coronavirus disease 2019 pneumonia on chest radiographs
por: Yoo, Seung-Jin, et al.
Publicado: (2023)