Cargando…

Influence of Blending of Nonionic Emulsifiers Having Various Hydrophilic Head Sizes on Lipid Oxidation: Investigation of Antioxidant Polarity—Interfacial Characteristics Relationship

The purpose of this study was to deliver insights into the effect of interfacial composition and antioxidant polarity on the lipid oxidation of emulsions. Emulsions were created using blends of nonionic ethoxylated fatty acid alcohol surfactants with different hydrophilic head sizes, and lipophilic...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Jiyun, Choi, Seung-Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228602/
https://www.ncbi.nlm.nih.gov/pubmed/34073114
http://dx.doi.org/10.3390/antiox10060886
_version_ 1783712780679905280
author Lee, Jiyun
Choi, Seung-Jun
author_facet Lee, Jiyun
Choi, Seung-Jun
author_sort Lee, Jiyun
collection PubMed
description The purpose of this study was to deliver insights into the effect of interfacial composition and antioxidant polarity on the lipid oxidation of emulsions. Emulsions were created using blends of nonionic ethoxylated fatty acid alcohol surfactants with different hydrophilic head sizes, and lipophilic (TBHQ) and amphiphilic (lauryl gallate) antioxidants were incorporated into the emulsions. At the same surfactant concentration, emulsion stabilized with surfactant with a smaller hydrophilic head was more susceptible to lipid oxidation than that stabilized with surfactant with a larger hydrophilic head. When surfactants with a similar hydrophilic head size were used, lipid oxidation in emulsion containing more surfactant was slightly faster than that containing less surfactant. When emulsions were created with a 1:1 molar ratio mixture of surfactants with small and large hydrophilic heads, surfactant concentration (1.00 and 2.932 mM) had little effect on lipid peroxide generation rate. However, the concentration of thiobarbituric acid-reactive substances (TBARSs) in the emulsion prepared at 1.00 mM increased faster than that prepared at 2.93 mM. Alteration of interfacial composition and surfactant concentration did not affect antioxidant ability, regardless of antioxidant polarity, to inhibit lipid peroxide generation. However, the ability of lauryl gallate and TBHQ to prevent TBARS generation was elevated by mixing surfactants with small and large hydrophilic heads and by decreasing surfactant concentration. In most emulsions, lauryl gallate showed a more effective antioxidant ability than TBHQ.
format Online
Article
Text
id pubmed-8228602
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-82286022021-06-26 Influence of Blending of Nonionic Emulsifiers Having Various Hydrophilic Head Sizes on Lipid Oxidation: Investigation of Antioxidant Polarity—Interfacial Characteristics Relationship Lee, Jiyun Choi, Seung-Jun Antioxidants (Basel) Article The purpose of this study was to deliver insights into the effect of interfacial composition and antioxidant polarity on the lipid oxidation of emulsions. Emulsions were created using blends of nonionic ethoxylated fatty acid alcohol surfactants with different hydrophilic head sizes, and lipophilic (TBHQ) and amphiphilic (lauryl gallate) antioxidants were incorporated into the emulsions. At the same surfactant concentration, emulsion stabilized with surfactant with a smaller hydrophilic head was more susceptible to lipid oxidation than that stabilized with surfactant with a larger hydrophilic head. When surfactants with a similar hydrophilic head size were used, lipid oxidation in emulsion containing more surfactant was slightly faster than that containing less surfactant. When emulsions were created with a 1:1 molar ratio mixture of surfactants with small and large hydrophilic heads, surfactant concentration (1.00 and 2.932 mM) had little effect on lipid peroxide generation rate. However, the concentration of thiobarbituric acid-reactive substances (TBARSs) in the emulsion prepared at 1.00 mM increased faster than that prepared at 2.93 mM. Alteration of interfacial composition and surfactant concentration did not affect antioxidant ability, regardless of antioxidant polarity, to inhibit lipid peroxide generation. However, the ability of lauryl gallate and TBHQ to prevent TBARS generation was elevated by mixing surfactants with small and large hydrophilic heads and by decreasing surfactant concentration. In most emulsions, lauryl gallate showed a more effective antioxidant ability than TBHQ. MDPI 2021-05-31 /pmc/articles/PMC8228602/ /pubmed/34073114 http://dx.doi.org/10.3390/antiox10060886 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Lee, Jiyun
Choi, Seung-Jun
Influence of Blending of Nonionic Emulsifiers Having Various Hydrophilic Head Sizes on Lipid Oxidation: Investigation of Antioxidant Polarity—Interfacial Characteristics Relationship
title Influence of Blending of Nonionic Emulsifiers Having Various Hydrophilic Head Sizes on Lipid Oxidation: Investigation of Antioxidant Polarity—Interfacial Characteristics Relationship
title_full Influence of Blending of Nonionic Emulsifiers Having Various Hydrophilic Head Sizes on Lipid Oxidation: Investigation of Antioxidant Polarity—Interfacial Characteristics Relationship
title_fullStr Influence of Blending of Nonionic Emulsifiers Having Various Hydrophilic Head Sizes on Lipid Oxidation: Investigation of Antioxidant Polarity—Interfacial Characteristics Relationship
title_full_unstemmed Influence of Blending of Nonionic Emulsifiers Having Various Hydrophilic Head Sizes on Lipid Oxidation: Investigation of Antioxidant Polarity—Interfacial Characteristics Relationship
title_short Influence of Blending of Nonionic Emulsifiers Having Various Hydrophilic Head Sizes on Lipid Oxidation: Investigation of Antioxidant Polarity—Interfacial Characteristics Relationship
title_sort influence of blending of nonionic emulsifiers having various hydrophilic head sizes on lipid oxidation: investigation of antioxidant polarity—interfacial characteristics relationship
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228602/
https://www.ncbi.nlm.nih.gov/pubmed/34073114
http://dx.doi.org/10.3390/antiox10060886
work_keys_str_mv AT leejiyun influenceofblendingofnonionicemulsifiershavingvarioushydrophilicheadsizesonlipidoxidationinvestigationofantioxidantpolarityinterfacialcharacteristicsrelationship
AT choiseungjun influenceofblendingofnonionicemulsifiershavingvarioushydrophilicheadsizesonlipidoxidationinvestigationofantioxidantpolarityinterfacialcharacteristicsrelationship