Cargando…
A Comparison between Finite Element Model (FEM) Simulation and an Integrated Artificial Neural Network (ANN)-Particle Swarm Optimization (PSO) Approach to Forecast Performances of Micro Electro Discharge Machining (Micro-EDM) Drilling
Artificial Neural Network (ANN), together with a Particle Swarm Optimization (PSO) and Finite Element Model (FEM), was used to forecast the process performances for the Micro Electrical Discharge Machining (micro-EDM) drilling process. The integrated ANN-PSO methodology has a double direction functi...
Autores principales: | Quarto, Mariangela, D’Urso, Gianluca, Giardini, Claudio, Maccarini, Giancarlo, Carminati, Mattia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228768/ https://www.ncbi.nlm.nih.gov/pubmed/34200342 http://dx.doi.org/10.3390/mi12060667 |
Ejemplares similares
-
Cost Index Model for the Process Performance Optimization of Micro-EDM Drilling on Tungsten Carbide
por: D’Urso, Gianluca, et al.
Publicado: (2017) -
Machinability and Energy Efficiency in Micro-EDM Milling of Zirconium Boride Reinforced with Silicon Carbide Fibers
por: Quarto, Mariangela, et al.
Publicado: (2019) -
Process Fingerprint in Micro-EDM Drilling
por: Bellotti, Mattia, et al.
Publicado: (2019) -
Thermo-Mechanical Characterization of Friction Stir Spot Welded AA7050 Sheets by Means of Experimental and FEM Analyses
por: D’Urso, Gianluca, et al.
Publicado: (2016) -
Study on ZrB(2)-Based Ceramics Reinforced with SiC Fibers or Whiskers Machined by Micro-Electrical Discharge Machining
por: Quarto, Mariangela, et al.
Publicado: (2020)