Cargando…
Plant DNA Barcode as a Tool for Root Identification in Hypogea: The Case of the Etruscan Tombs of Tarquinia (Central Italy)
Roots can produce mechanical and chemical alterations to building structures, especially in the case of underground historical artifacts. In archaeological sites, where vegetation plays the dual role of naturalistic relevance and potential threat, trees and bushes are under supervision. No customize...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228792/ https://www.ncbi.nlm.nih.gov/pubmed/34205139 http://dx.doi.org/10.3390/plants10061138 |
Sumario: | Roots can produce mechanical and chemical alterations to building structures, especially in the case of underground historical artifacts. In archaeological sites, where vegetation plays the dual role of naturalistic relevance and potential threat, trees and bushes are under supervision. No customized measures can be taken against herbaceous plants lacking fast and reliable root identification methods that are useful to assess their dangerousness. In this study, we aimed to test the efficacy of DNA barcoding in identifying plant rootlets threatening the Etruscan tombs of the Necropolis of Tarquinia. As DNA barcode markers, we selected two sections of the genes rbcL and matK, the nuclear ribosomal internal transcribed spacer (nrITS), and the intergenic spacer psbA-trnH. All fourteen root samples were successfully sequenced and identified at species (92.9%) and genus level (7.01%) by GenBank matching and reference dataset implementation. Some eudicotyledons with taproots, such as Echium italicum L., Foeniculum vulgare Mill., and Reseda lutea L. subsp. lutea, showed a certain recurrence. Further investigations are needed to confirm this promising result, increasing the number of roots and enlarging the reference dataset with attention to meso-Mediterranean perennial herbaceous species. The finding of herbaceous plants roots at more than 3 m deep confirms their potential risk and underlines the importance of vegetation planning, monitoring, and management on archaeological sites. |
---|