Cargando…

Carrier Blocking Layer Materials and Application in Organic Photodetectors

As a promising candidate for next-generation photodetectors, organic photodetectors (OPDs) have gained increasing interest as they offer cost-effective fabrication methods using solution processes and a tunable spectral response range, making them particularly attractive for large area image sensors...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yi, Chen, Hu, Zhang, Jianhua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228918/
https://www.ncbi.nlm.nih.gov/pubmed/34073349
http://dx.doi.org/10.3390/nano11061404
Descripción
Sumario:As a promising candidate for next-generation photodetectors, organic photodetectors (OPDs) have gained increasing interest as they offer cost-effective fabrication methods using solution processes and a tunable spectral response range, making them particularly attractive for large area image sensors on lightweight flexible substrates. Carrier blocking layers engineering is very important to the high performance of OPDs that can select a certain charge carriers (holes or electrons) to be collected and suppress another carrier. Carrier blocking layers of OPDs play a critical role in reducing dark current, boosting their efficiency and long-time stability. This Review summarizes various materials for carrier blocking layers and some of the latest progress in OPDs. This provides the reader with guidelines to improve the OPD performance via carrier blocking layers engineering.