Cargando…
Harnessing Astrocytes and Müller Glial Cells in the Retina for Survival and Regeneration of Retinal Ganglion Cells
Astrocytes have been associated with the failure of axon regeneration in the central nervous system (CNS), as it undergoes reactive gliosis in response to damages to the CNS and functions as a chemical and physical barrier to axon regeneration. However, beneficial roles of astrocytes have been exten...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229010/ https://www.ncbi.nlm.nih.gov/pubmed/34071545 http://dx.doi.org/10.3390/cells10061339 |
_version_ | 1783712876290113536 |
---|---|
author | Yoo, Hyung-Suk Shanmugalingam, Ushananthini Smith, Patrice D. |
author_facet | Yoo, Hyung-Suk Shanmugalingam, Ushananthini Smith, Patrice D. |
author_sort | Yoo, Hyung-Suk |
collection | PubMed |
description | Astrocytes have been associated with the failure of axon regeneration in the central nervous system (CNS), as it undergoes reactive gliosis in response to damages to the CNS and functions as a chemical and physical barrier to axon regeneration. However, beneficial roles of astrocytes have been extensively studied in the spinal cord over the years, and a growing body of evidence now suggests that inducing astrocytes to become more growth-supportive can promote axon regeneration after spinal cord injury (SCI). In retina, astrocytes and Müller cells are known to undergo reactive gliosis after damage to retina and/or optic nerve and are hypothesized to be either detrimental or beneficial to survival and axon regeneration of retinal ganglion cells (RGCs). Whether they can be induced to become more growth-supportive after retinal and optic nerve injury has yet to be determined. In this review, we pinpoint the potential molecular pathways involved in the induction of growth-supportive astrocytes in the spinal cord and suggest that stimulating the activation of these pathways in the retina could represent a new therapeutic approach to promoting survival and axon regeneration of RGCs in retinal degenerative diseases. |
format | Online Article Text |
id | pubmed-8229010 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82290102021-06-26 Harnessing Astrocytes and Müller Glial Cells in the Retina for Survival and Regeneration of Retinal Ganglion Cells Yoo, Hyung-Suk Shanmugalingam, Ushananthini Smith, Patrice D. Cells Review Astrocytes have been associated with the failure of axon regeneration in the central nervous system (CNS), as it undergoes reactive gliosis in response to damages to the CNS and functions as a chemical and physical barrier to axon regeneration. However, beneficial roles of astrocytes have been extensively studied in the spinal cord over the years, and a growing body of evidence now suggests that inducing astrocytes to become more growth-supportive can promote axon regeneration after spinal cord injury (SCI). In retina, astrocytes and Müller cells are known to undergo reactive gliosis after damage to retina and/or optic nerve and are hypothesized to be either detrimental or beneficial to survival and axon regeneration of retinal ganglion cells (RGCs). Whether they can be induced to become more growth-supportive after retinal and optic nerve injury has yet to be determined. In this review, we pinpoint the potential molecular pathways involved in the induction of growth-supportive astrocytes in the spinal cord and suggest that stimulating the activation of these pathways in the retina could represent a new therapeutic approach to promoting survival and axon regeneration of RGCs in retinal degenerative diseases. MDPI 2021-05-28 /pmc/articles/PMC8229010/ /pubmed/34071545 http://dx.doi.org/10.3390/cells10061339 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Yoo, Hyung-Suk Shanmugalingam, Ushananthini Smith, Patrice D. Harnessing Astrocytes and Müller Glial Cells in the Retina for Survival and Regeneration of Retinal Ganglion Cells |
title | Harnessing Astrocytes and Müller Glial Cells in the Retina for Survival and Regeneration of Retinal Ganglion Cells |
title_full | Harnessing Astrocytes and Müller Glial Cells in the Retina for Survival and Regeneration of Retinal Ganglion Cells |
title_fullStr | Harnessing Astrocytes and Müller Glial Cells in the Retina for Survival and Regeneration of Retinal Ganglion Cells |
title_full_unstemmed | Harnessing Astrocytes and Müller Glial Cells in the Retina for Survival and Regeneration of Retinal Ganglion Cells |
title_short | Harnessing Astrocytes and Müller Glial Cells in the Retina for Survival and Regeneration of Retinal Ganglion Cells |
title_sort | harnessing astrocytes and müller glial cells in the retina for survival and regeneration of retinal ganglion cells |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229010/ https://www.ncbi.nlm.nih.gov/pubmed/34071545 http://dx.doi.org/10.3390/cells10061339 |
work_keys_str_mv | AT yoohyungsuk harnessingastrocytesandmullerglialcellsintheretinaforsurvivalandregenerationofretinalganglioncells AT shanmugalingamushananthini harnessingastrocytesandmullerglialcellsintheretinaforsurvivalandregenerationofretinalganglioncells AT smithpatriced harnessingastrocytesandmullerglialcellsintheretinaforsurvivalandregenerationofretinalganglioncells |