Cargando…
A Cascaded Neural Network for Staging in Non-Small Cell Lung Cancer Using Pre-Treatment CT
Background and aim: Tumor staging in non-small cell lung cancer (NSCLC) is important for treatment and prognosis. Staging involves expert interpretation of imaging, which we aim to automate with deep learning (DL). We proposed a cascaded DL method comprised of two steps to classification between ear...
Autores principales: | Choi, Jieun, Cho, Hwan-ho, Kwon, Junmo, Lee, Ho Yun, Park, Hyunjin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229025/ https://www.ncbi.nlm.nih.gov/pubmed/34200270 http://dx.doi.org/10.3390/diagnostics11061047 |
Ejemplares similares
-
Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans
por: Cho, Hwan-ho, et al.
Publicado: (2021) -
Are radiomics features universally applicable to different organs?
por: Lee, Seung-Hak, et al.
Publicado: (2021) -
Clinical impact of variability on CT radiomics and suggestions for suitable feature selection: a focus on lung cancer
por: Lee, Seung-Hak, et al.
Publicado: (2019) -
Pleomorphic carcinoma of the lung: Prognostic models of semantic, radiomics and combined features from CT and PET/CT in 85 patients
por: Kim, Chohee, et al.
Publicado: (2021) -
Deep learning analysis to predict EGFR mutation status in lung adenocarcinoma manifesting as pure ground-glass opacity nodules on CT
por: Yoon, Hyun Jung, et al.
Publicado: (2022)