Cargando…
Anti-Candida Activity of Hyaluronic Acid Combined with Lactobacillus crispatus Lyophilised Supernatant: A New Antifungal Strategy
Vulvovaginal candidiasis (VVC) and recurrencies are common in reproductive-aged women. The emergence of Candida strains resistant to conventional antimycotic drugs prompted the search for alternative therapies. Hyaluronic acid (HA), a uniform and linear glycosaminoglycan, has been proposed as an ant...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229037/ https://www.ncbi.nlm.nih.gov/pubmed/34070335 http://dx.doi.org/10.3390/antibiotics10060628 |
Sumario: | Vulvovaginal candidiasis (VVC) and recurrencies are common in reproductive-aged women. The emergence of Candida strains resistant to conventional antimycotic drugs prompted the search for alternative therapies. Hyaluronic acid (HA), a uniform and linear glycosaminoglycan, has been proposed as an anti-Candida agent. Vaginal lactobacilli and their derivatives, including cell free culture supernatants (CFS), represent potential strategies for the treatment of Candida infections. In the present paper, the anti-Candida potential of HA and lyophilised CFS (LCFS), obtained from the vaginal strain Lactobacillus crispatus BC5, was investigated. HA and LCFS proved to be active towards a panel of clinical Candida isolates belonging to different species in a dose dependent manner and their association maintained the antifungal activity. Notably, also Candida species generally resistant to conventional antifungals resulted sensitive. A vaginal matrix based on microcrystalline cellulose and containing effective doses of both agents was developed and characterised. This vaginal formulation showed mucoadhesive ability and almost abrogated Candida albicans growth. In conclusion, HA and LCFS from L. crispatus BC5 are thus good candidates to design a new therapeutic strategy to counteract VVC, and the proposed vaginal matrix represents a promising prototype. |
---|