Cargando…

Cytogenomics of Deschampsia P. Beauv. (Poaceae) Species Based on Sequence Analyses and FISH Mapping of CON/COM Satellite DNA Families

The genus Deschampsia P. Beauv. (Poaceae) involves a group of widespread polymorphic species, and many of them are highly tolerant to stressful environmental conditions. Genome diversity and chromosomal phylogeny within the genus are still insufficiently studied. Satellite DNAs, including CON/COM fa...

Descripción completa

Detalles Bibliográficos
Autores principales: Amosova, Alexandra V., Ghukasyan, Lilit, Yurkevich, Olga Yu., Bolsheva, Nadezhda L., Samatadze, Tatiana E., Zoshchuk, Svyatoslav A., Muravenko, Olga V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229069/
https://www.ncbi.nlm.nih.gov/pubmed/34070920
http://dx.doi.org/10.3390/plants10061105
Descripción
Sumario:The genus Deschampsia P. Beauv. (Poaceae) involves a group of widespread polymorphic species, and many of them are highly tolerant to stressful environmental conditions. Genome diversity and chromosomal phylogeny within the genus are still insufficiently studied. Satellite DNAs, including CON/COM families, are the main components of the plant repeatome, which contribute to chromosome organization. For the first time, using PCR-based (Polymerase Chain Reaction) techniques and sequential BLAST (Basic Local Alignment Search Tool) and MSA (Multiple Sequence Alignment) analyses, we identified and classified CON/COM repeats in genomes of eleven Deschampsia accessions and three accessions from related genera. High homology of CON/COM sequences were revealed in the studied species though differences in single-nucleotide alteration profiles detected in homologous CON/COM regions indicated that they tended to diverge independently. The performed chromosome mapping of 45S rDNA, 5S rDNA, and CON/COM repeats in six Deschampsia species demonstrated interspecific variability in localization of these cytogenetic markers and facilitated the identification of different chromosomal rearrangements. Based on the obtained data, the studied Deschampsia species were distinguished into karyological groups, and MSA-based schematic trees were built, which could clarify the relationships within the genus. Our findings can be useful for further genetic and phylogenetic studies.