Cargando…

An Extended Correlation Dimension of Complex Networks

Fractal and self-similarity are important characteristics of complex networks. The correlation dimension is one of the measures implemented to characterize the fractal nature of unweighted structures, but it has not been extended to weighted networks. In this paper, the correlation dimension is exte...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Sheng, Lan, Wenxiang, Dai, Weikai, Wu, Feng, Chen, Caisen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229313/
https://www.ncbi.nlm.nih.gov/pubmed/34205073
http://dx.doi.org/10.3390/e23060710
Descripción
Sumario:Fractal and self-similarity are important characteristics of complex networks. The correlation dimension is one of the measures implemented to characterize the fractal nature of unweighted structures, but it has not been extended to weighted networks. In this paper, the correlation dimension is extended to the weighted networks. The proposed method uses edge-weights accumulation to obtain scale distances. It can be used not only for weighted networks but also for unweighted networks. We selected six weighted networks, including two synthetic fractal networks and four real-world networks, to validate it. The results show that the proposed method was effective for the fractal scaling analysis of weighted complex networks. Meanwhile, this method was used to analyze the fractal properties of the Newman–Watts (NW) unweighted small-world networks. Compared with other fractal dimensions, the correlation dimension is more suitable for the quantitative analysis of small-world effects.