Cargando…
Novel Treatment Strategy Using Second-Generation Androgen Receptor Inhibitors for Non-Metastatic Castration-Resistant Prostate Cancer
Non-metastatic castration-resistant prostate cancer (nmCRPC) is defined by a progressively rising prostate-specific antigen level, despite a castrate level of testosterone, in the absence of obvious radiologic evidence of metastatic disease on conventional imaging modalities. As a significant propor...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229358/ https://www.ncbi.nlm.nih.gov/pubmed/34207755 http://dx.doi.org/10.3390/biomedicines9060661 |
Sumario: | Non-metastatic castration-resistant prostate cancer (nmCRPC) is defined by a progressively rising prostate-specific antigen level, despite a castrate level of testosterone, in the absence of obvious radiologic evidence of metastatic disease on conventional imaging modalities. As a significant proportion of patients with nmCRPC develop metastatic diseases, the therapeutic goals of physicians for these patients are to delay metastasis development, preserve quality of life, and increase overall survival (OS). Since 2018, the treatment of nmCRPC has changed dramatically with the introduction of second-generation androgen receptor inhibitors, such as enzalutamide (ENZA), apalutamide (APA), and darolutamide (DARO). These drugs demonstrated substantial improvements in metastasis-free survival (MFS) and OS in phase III randomized clinical trials. In addition, these drugs have an excellent safety profile, preserve quality of life, and can delay disease-related symptoms. A recently published indirect meta-analysis reported that APA and ENZA showed better findings in MFS and that DARO had relatively fewer adverse effects. However, in the absence of a direct comparison, careful interpretation is required. Thus, APA, ENZA, and DARO should be considered the new standard drugs for treating nmCRPC. |
---|