Cargando…
RET Regulates Human Medullary Thyroid Cancer Cell Proliferation through CDK5 and STAT3 Activation
Medullary thyroid cancer (MTC) is a neuroendocrine tumor that arises from the parafollicular C-cells, which produces the hormone calcitonin. RET is a transmembrane receptor protein-tyrosine kinase, which is highly expressed in MTC. Our previous studies reported that cyclin-dependent kinase 5 (CDK5)...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229599/ https://www.ncbi.nlm.nih.gov/pubmed/34207842 http://dx.doi.org/10.3390/biom11060860 |
_version_ | 1783713015595532288 |
---|---|
author | Yue, Chia-Herng Oner, Muhammet Chiu, Chih-Yuan Chen, Mei-Chih Teng, Chieh-Lin Wang, Hsin-Yi Hsieh, Jer-Tsong Lai, Chih-Ho Lin, Ho |
author_facet | Yue, Chia-Herng Oner, Muhammet Chiu, Chih-Yuan Chen, Mei-Chih Teng, Chieh-Lin Wang, Hsin-Yi Hsieh, Jer-Tsong Lai, Chih-Ho Lin, Ho |
author_sort | Yue, Chia-Herng |
collection | PubMed |
description | Medullary thyroid cancer (MTC) is a neuroendocrine tumor that arises from the parafollicular C-cells, which produces the hormone calcitonin. RET is a transmembrane receptor protein-tyrosine kinase, which is highly expressed in MTC. Our previous studies reported that cyclin-dependent kinase 5 (CDK5) plays a crucial role in cancer progression, including MTC. However, the role of CDK5 in GDNF-induced RET signaling in medullary thyroid cancer proliferation remains unknown. Here, we investigated RET activation and its biochemically interaction with CDK5 in GDNF-induced medullary thyroid cancer proliferation. Our results demonstrated that GDNF stimulated RET phosphorylation and thus subsequently resulted in CDK5 activation by its phosphorylation. Activated CDK5 further caused STAT3 activation by its specific phosphorylation at Ser727. Moreover, we also found that GDNF treatment enhanced ERK1/2 and EGR1 activity, which is involved in p35 activation. Interestingly, we identified for the first time that CDK5 physically interacted with RET protein in MTC. Overall, our results provide a new mechanism for medullary thyroid cancer cell proliferation, suggesting that targeting CDK5 may be a promising therapeutic candidate for human medullary thyroid cancer in the near future. |
format | Online Article Text |
id | pubmed-8229599 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82295992021-06-26 RET Regulates Human Medullary Thyroid Cancer Cell Proliferation through CDK5 and STAT3 Activation Yue, Chia-Herng Oner, Muhammet Chiu, Chih-Yuan Chen, Mei-Chih Teng, Chieh-Lin Wang, Hsin-Yi Hsieh, Jer-Tsong Lai, Chih-Ho Lin, Ho Biomolecules Article Medullary thyroid cancer (MTC) is a neuroendocrine tumor that arises from the parafollicular C-cells, which produces the hormone calcitonin. RET is a transmembrane receptor protein-tyrosine kinase, which is highly expressed in MTC. Our previous studies reported that cyclin-dependent kinase 5 (CDK5) plays a crucial role in cancer progression, including MTC. However, the role of CDK5 in GDNF-induced RET signaling in medullary thyroid cancer proliferation remains unknown. Here, we investigated RET activation and its biochemically interaction with CDK5 in GDNF-induced medullary thyroid cancer proliferation. Our results demonstrated that GDNF stimulated RET phosphorylation and thus subsequently resulted in CDK5 activation by its phosphorylation. Activated CDK5 further caused STAT3 activation by its specific phosphorylation at Ser727. Moreover, we also found that GDNF treatment enhanced ERK1/2 and EGR1 activity, which is involved in p35 activation. Interestingly, we identified for the first time that CDK5 physically interacted with RET protein in MTC. Overall, our results provide a new mechanism for medullary thyroid cancer cell proliferation, suggesting that targeting CDK5 may be a promising therapeutic candidate for human medullary thyroid cancer in the near future. MDPI 2021-06-09 /pmc/articles/PMC8229599/ /pubmed/34207842 http://dx.doi.org/10.3390/biom11060860 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yue, Chia-Herng Oner, Muhammet Chiu, Chih-Yuan Chen, Mei-Chih Teng, Chieh-Lin Wang, Hsin-Yi Hsieh, Jer-Tsong Lai, Chih-Ho Lin, Ho RET Regulates Human Medullary Thyroid Cancer Cell Proliferation through CDK5 and STAT3 Activation |
title | RET Regulates Human Medullary Thyroid Cancer Cell Proliferation through CDK5 and STAT3 Activation |
title_full | RET Regulates Human Medullary Thyroid Cancer Cell Proliferation through CDK5 and STAT3 Activation |
title_fullStr | RET Regulates Human Medullary Thyroid Cancer Cell Proliferation through CDK5 and STAT3 Activation |
title_full_unstemmed | RET Regulates Human Medullary Thyroid Cancer Cell Proliferation through CDK5 and STAT3 Activation |
title_short | RET Regulates Human Medullary Thyroid Cancer Cell Proliferation through CDK5 and STAT3 Activation |
title_sort | ret regulates human medullary thyroid cancer cell proliferation through cdk5 and stat3 activation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229599/ https://www.ncbi.nlm.nih.gov/pubmed/34207842 http://dx.doi.org/10.3390/biom11060860 |
work_keys_str_mv | AT yuechiaherng retregulateshumanmedullarythyroidcancercellproliferationthroughcdk5andstat3activation AT onermuhammet retregulateshumanmedullarythyroidcancercellproliferationthroughcdk5andstat3activation AT chiuchihyuan retregulateshumanmedullarythyroidcancercellproliferationthroughcdk5andstat3activation AT chenmeichih retregulateshumanmedullarythyroidcancercellproliferationthroughcdk5andstat3activation AT tengchiehlin retregulateshumanmedullarythyroidcancercellproliferationthroughcdk5andstat3activation AT wanghsinyi retregulateshumanmedullarythyroidcancercellproliferationthroughcdk5andstat3activation AT hsiehjertsong retregulateshumanmedullarythyroidcancercellproliferationthroughcdk5andstat3activation AT laichihho retregulateshumanmedullarythyroidcancercellproliferationthroughcdk5andstat3activation AT linho retregulateshumanmedullarythyroidcancercellproliferationthroughcdk5andstat3activation |