Cargando…

Flexible SAW Microfluidic Devices as Wearable pH Sensors Based on ZnO Nanoparticles

In this work, a new flexible and biocompatible microfluidic pH sensor based on surface acoustic waves (SAWs) is presented. The device consists of polyethylene naphthalate (PEN) as a flexible substrate on which aluminum nitride (AlN) has been deposited as a piezoelectric material. The fabrication of...

Descripción completa

Detalles Bibliográficos
Autores principales: Piro, Luigi, Lamanna, Leonardo, Guido, Francesco, Balena, Antonio, Mariello, Massimo, Rizzi, Francesco, De Vittorio, Massimo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229701/
https://www.ncbi.nlm.nih.gov/pubmed/34204874
http://dx.doi.org/10.3390/nano11061479
Descripción
Sumario:In this work, a new flexible and biocompatible microfluidic pH sensor based on surface acoustic waves (SAWs) is presented. The device consists of polyethylene naphthalate (PEN) as a flexible substrate on which aluminum nitride (AlN) has been deposited as a piezoelectric material. The fabrication of suitable interdigitated transducers (IDTs) generates Lamb waves (L-SAW) with a center frequency ≈500 MHz traveling in the active region. A SU-8 microfluidics employing ZnO nanoparticles (NPs) functionalization as a pH-sensitive layer is fabricated between the IDTs, causing a shift in the L-SAW resonance frequency as a function of the change in pH values. The obtained sensitivity of ≈30 kHz/pH from pH 7 to pH 2 demonstrates the high potential of flexible SAW devices to be used in the measurement of pH in fluids and biosensing.