Cargando…
A two-way rectification method for identifying differentially expressed genes by maximizing the co-function relationship
BACKGROUND: The identification of differentially expressed genes (DEGs) is an important task in many biological studies. The currently widely used methods often calculate a score for each gene by estimating the significance level in terms of the differential expression. However, biological experimen...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229713/ https://www.ncbi.nlm.nih.gov/pubmed/34171992 http://dx.doi.org/10.1186/s12864-021-07772-2 |
_version_ | 1783713042568052736 |
---|---|
author | Chen, Bolin Gao, Li Shang, Xuequn |
author_facet | Chen, Bolin Gao, Li Shang, Xuequn |
author_sort | Chen, Bolin |
collection | PubMed |
description | BACKGROUND: The identification of differentially expressed genes (DEGs) is an important task in many biological studies. The currently widely used methods often calculate a score for each gene by estimating the significance level in terms of the differential expression. However, biological experiments often have only three duplications, plus plenty of noises contain in gene expression datasets, which brings a great challenge to statistical analysis methods. Moreover, the abundance of gene expression levels are not evenly distributed. Thus, those low expressed genes are more easily to be detected by fold-change based methods, which may results in high false positives among the DEG list. Since phenotypical changes result from DEGs should be strongly related to several distinct cellular functions, a more robust method should be designed to increase the true positive rate of the functional related DEGs. RESULTS: In this study, we propose a two-way rectification method for identifying DEGs by maximizing the co-function relationships between genes and their enriched cellular pathways. An iteration strategy is employed to sequentially narrow down the group of identified DEGs and their associated biological functions. Functional analyses reveal that the identified DEGs are well organized in the form of functional modules, and the enriched pathways are very significant with lower p-value and larger gene count. CONCLUSIONS: An integrative rectification method was proposed to identify key DEGs and their related functions simultaneously. The experimental validations demonstrate that the method has high interpretability and feasibility. It performs very well in terms of the identification of remarkable functional related genes. |
format | Online Article Text |
id | pubmed-8229713 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-82297132021-06-28 A two-way rectification method for identifying differentially expressed genes by maximizing the co-function relationship Chen, Bolin Gao, Li Shang, Xuequn BMC Genomics Research BACKGROUND: The identification of differentially expressed genes (DEGs) is an important task in many biological studies. The currently widely used methods often calculate a score for each gene by estimating the significance level in terms of the differential expression. However, biological experiments often have only three duplications, plus plenty of noises contain in gene expression datasets, which brings a great challenge to statistical analysis methods. Moreover, the abundance of gene expression levels are not evenly distributed. Thus, those low expressed genes are more easily to be detected by fold-change based methods, which may results in high false positives among the DEG list. Since phenotypical changes result from DEGs should be strongly related to several distinct cellular functions, a more robust method should be designed to increase the true positive rate of the functional related DEGs. RESULTS: In this study, we propose a two-way rectification method for identifying DEGs by maximizing the co-function relationships between genes and their enriched cellular pathways. An iteration strategy is employed to sequentially narrow down the group of identified DEGs and their associated biological functions. Functional analyses reveal that the identified DEGs are well organized in the form of functional modules, and the enriched pathways are very significant with lower p-value and larger gene count. CONCLUSIONS: An integrative rectification method was proposed to identify key DEGs and their related functions simultaneously. The experimental validations demonstrate that the method has high interpretability and feasibility. It performs very well in terms of the identification of remarkable functional related genes. BioMed Central 2021-06-25 /pmc/articles/PMC8229713/ /pubmed/34171992 http://dx.doi.org/10.1186/s12864-021-07772-2 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visithttp://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Chen, Bolin Gao, Li Shang, Xuequn A two-way rectification method for identifying differentially expressed genes by maximizing the co-function relationship |
title | A two-way rectification method for identifying differentially expressed genes by maximizing the co-function relationship |
title_full | A two-way rectification method for identifying differentially expressed genes by maximizing the co-function relationship |
title_fullStr | A two-way rectification method for identifying differentially expressed genes by maximizing the co-function relationship |
title_full_unstemmed | A two-way rectification method for identifying differentially expressed genes by maximizing the co-function relationship |
title_short | A two-way rectification method for identifying differentially expressed genes by maximizing the co-function relationship |
title_sort | two-way rectification method for identifying differentially expressed genes by maximizing the co-function relationship |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229713/ https://www.ncbi.nlm.nih.gov/pubmed/34171992 http://dx.doi.org/10.1186/s12864-021-07772-2 |
work_keys_str_mv | AT chenbolin atwowayrectificationmethodforidentifyingdifferentiallyexpressedgenesbymaximizingthecofunctionrelationship AT gaoli atwowayrectificationmethodforidentifyingdifferentiallyexpressedgenesbymaximizingthecofunctionrelationship AT shangxuequn atwowayrectificationmethodforidentifyingdifferentiallyexpressedgenesbymaximizingthecofunctionrelationship AT chenbolin twowayrectificationmethodforidentifyingdifferentiallyexpressedgenesbymaximizingthecofunctionrelationship AT gaoli twowayrectificationmethodforidentifyingdifferentiallyexpressedgenesbymaximizingthecofunctionrelationship AT shangxuequn twowayrectificationmethodforidentifyingdifferentiallyexpressedgenesbymaximizingthecofunctionrelationship |