Cargando…
Defects and Strain Engineering of Structural, Elastic, and Electronic Properties of Boron-Phosphide Monolayer: A Hybrid Density Functional Theory Study
Defects and in-plane strain have significant effects on the electronic properties of two-dimensional nanostructures. However, due to the influence of substrate and environmental conditions, defects and strain are inevitable during the growth or processing. In this study, hybrid density functional th...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229720/ https://www.ncbi.nlm.nih.gov/pubmed/34070433 http://dx.doi.org/10.3390/nano11061395 |
_version_ | 1783713044256260096 |
---|---|
author | Li, Fang-Qiang Zhang, Yang Zhang, Sheng-Li |
author_facet | Li, Fang-Qiang Zhang, Yang Zhang, Sheng-Li |
author_sort | Li, Fang-Qiang |
collection | PubMed |
description | Defects and in-plane strain have significant effects on the electronic properties of two-dimensional nanostructures. However, due to the influence of substrate and environmental conditions, defects and strain are inevitable during the growth or processing. In this study, hybrid density functional theory was employed to systematically investigate the electronic properties of boron-phosphide monolayers tuned by the in-plane biaxial strain and defects. Four types of defects were considered: B-vacancy (B_v), P-vacancy (P_v), double vacancy (D_v), and Stone–Wales (S-W). Charge density difference and Bader charge analysis were performed to characterize the structural properties of defective monolayers. All of these defects could result in the boron-phosphide monolayer being much softer with anisotropic in-plane Young’s modulus, which is different from the isotropic modulus of the pure layer. The calculated electronic structures show that the P_v, D_v, and S-W defective monolayers are indirect band gap semiconductors, while the B_v defective system is metallic, which is different from the direct band gap of the pure boron-phosphide monolayer. In addition, the in-plane biaxial strain can monotonically tune the band gap of the boron-phosphide monolayer. The band gap increases with the increasing tension strain, while it decreases as the compression strain increases. Our results suggest that the defects and in-plane strain are effective for tuning the electronic properties of the boron-phosphide monolayer, which could motivate further studies to exploit the promising application in electronics and optoelectronics based on the boron-phosphide monolayer. |
format | Online Article Text |
id | pubmed-8229720 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82297202021-06-26 Defects and Strain Engineering of Structural, Elastic, and Electronic Properties of Boron-Phosphide Monolayer: A Hybrid Density Functional Theory Study Li, Fang-Qiang Zhang, Yang Zhang, Sheng-Li Nanomaterials (Basel) Article Defects and in-plane strain have significant effects on the electronic properties of two-dimensional nanostructures. However, due to the influence of substrate and environmental conditions, defects and strain are inevitable during the growth or processing. In this study, hybrid density functional theory was employed to systematically investigate the electronic properties of boron-phosphide monolayers tuned by the in-plane biaxial strain and defects. Four types of defects were considered: B-vacancy (B_v), P-vacancy (P_v), double vacancy (D_v), and Stone–Wales (S-W). Charge density difference and Bader charge analysis were performed to characterize the structural properties of defective monolayers. All of these defects could result in the boron-phosphide monolayer being much softer with anisotropic in-plane Young’s modulus, which is different from the isotropic modulus of the pure layer. The calculated electronic structures show that the P_v, D_v, and S-W defective monolayers are indirect band gap semiconductors, while the B_v defective system is metallic, which is different from the direct band gap of the pure boron-phosphide monolayer. In addition, the in-plane biaxial strain can monotonically tune the band gap of the boron-phosphide monolayer. The band gap increases with the increasing tension strain, while it decreases as the compression strain increases. Our results suggest that the defects and in-plane strain are effective for tuning the electronic properties of the boron-phosphide monolayer, which could motivate further studies to exploit the promising application in electronics and optoelectronics based on the boron-phosphide monolayer. MDPI 2021-05-25 /pmc/articles/PMC8229720/ /pubmed/34070433 http://dx.doi.org/10.3390/nano11061395 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Fang-Qiang Zhang, Yang Zhang, Sheng-Li Defects and Strain Engineering of Structural, Elastic, and Electronic Properties of Boron-Phosphide Monolayer: A Hybrid Density Functional Theory Study |
title | Defects and Strain Engineering of Structural, Elastic, and Electronic Properties of Boron-Phosphide Monolayer: A Hybrid Density Functional Theory Study |
title_full | Defects and Strain Engineering of Structural, Elastic, and Electronic Properties of Boron-Phosphide Monolayer: A Hybrid Density Functional Theory Study |
title_fullStr | Defects and Strain Engineering of Structural, Elastic, and Electronic Properties of Boron-Phosphide Monolayer: A Hybrid Density Functional Theory Study |
title_full_unstemmed | Defects and Strain Engineering of Structural, Elastic, and Electronic Properties of Boron-Phosphide Monolayer: A Hybrid Density Functional Theory Study |
title_short | Defects and Strain Engineering of Structural, Elastic, and Electronic Properties of Boron-Phosphide Monolayer: A Hybrid Density Functional Theory Study |
title_sort | defects and strain engineering of structural, elastic, and electronic properties of boron-phosphide monolayer: a hybrid density functional theory study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229720/ https://www.ncbi.nlm.nih.gov/pubmed/34070433 http://dx.doi.org/10.3390/nano11061395 |
work_keys_str_mv | AT lifangqiang defectsandstrainengineeringofstructuralelasticandelectronicpropertiesofboronphosphidemonolayerahybriddensityfunctionaltheorystudy AT zhangyang defectsandstrainengineeringofstructuralelasticandelectronicpropertiesofboronphosphidemonolayerahybriddensityfunctionaltheorystudy AT zhangshengli defectsandstrainengineeringofstructuralelasticandelectronicpropertiesofboronphosphidemonolayerahybriddensityfunctionaltheorystudy |