Cargando…
kESVR: An Ensemble Model for Drug Response Prediction in Precision Medicine Using Cancer Cell Lines Gene Expression
Background: Cancer cell lines are frequently used in research as in-vitro tumor models. Genomic data and large-scale drug screening have accelerated the right drug selection for cancer patients. Accuracy in drug response prediction is crucial for success. Due to data-type diversity and big data volu...
Autores principales: | Majumdar, Abhishek, Liu, Yueze, Lu, Yaoqin, Wu, Shaofeng, Cheng, Lijun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229729/ https://www.ncbi.nlm.nih.gov/pubmed/34070793 http://dx.doi.org/10.3390/genes12060844 |
Ejemplares similares
-
Computational Cancer Cell Models to Guide Precision Breast Cancer Medicine
por: Cheng, Lijun, et al.
Publicado: (2020) -
Document Retrieval for Precision Medicine Using a Deep Learning Ensemble Method
por: Liu, Zhiqiang, et al.
Publicado: (2021) -
DGCyTOF: Deep learning with graphic cluster visualization to predict cell types of single cell mass cytometry data
por: Cheng, Lijun, et al.
Publicado: (2022) -
Towards precision medicine based on a continuous deep learning optimization and ensemble approach
por: Li, Jian, et al.
Publicado: (2023) -
Comprehensive ensemble in QSAR prediction for drug discovery
por: Kwon, Sunyoung, et al.
Publicado: (2019)