Cargando…

Semi-Classical Discretization and Long-Time Evolution of Variable Spin Systems

We apply the semi-classical limit of the generalized [Formula: see text] map for representation of variable-spin systems in a four-dimensional symplectic manifold and approximate their evolution terms of effective classical dynamics on [Formula: see text]. Using the asymptotic form of the star-produ...

Descripción completa

Detalles Bibliográficos
Autores principales: Morales-Hernández, Giovani E., Castellanos, Juan C., Romero, José L., Klimov, Andrei B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229760/
https://www.ncbi.nlm.nih.gov/pubmed/34071644
http://dx.doi.org/10.3390/e23060684
Descripción
Sumario:We apply the semi-classical limit of the generalized [Formula: see text] map for representation of variable-spin systems in a four-dimensional symplectic manifold and approximate their evolution terms of effective classical dynamics on [Formula: see text]. Using the asymptotic form of the star-product, we manage to “quantize” one of the classical dynamic variables and introduce a discretized version of the Truncated Wigner Approximation (TWA). Two emblematic examples of quantum dynamics (rotor in an external field and two coupled spins) are analyzed, and the results of exact, continuous, and discretized versions of TWA are compared.