Cargando…

Semi-Classical Discretization and Long-Time Evolution of Variable Spin Systems

We apply the semi-classical limit of the generalized [Formula: see text] map for representation of variable-spin systems in a four-dimensional symplectic manifold and approximate their evolution terms of effective classical dynamics on [Formula: see text]. Using the asymptotic form of the star-produ...

Descripción completa

Detalles Bibliográficos
Autores principales: Morales-Hernández, Giovani E., Castellanos, Juan C., Romero, José L., Klimov, Andrei B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229760/
https://www.ncbi.nlm.nih.gov/pubmed/34071644
http://dx.doi.org/10.3390/e23060684
_version_ 1783713053841293312
author Morales-Hernández, Giovani E.
Castellanos, Juan C.
Romero, José L.
Klimov, Andrei B.
author_facet Morales-Hernández, Giovani E.
Castellanos, Juan C.
Romero, José L.
Klimov, Andrei B.
author_sort Morales-Hernández, Giovani E.
collection PubMed
description We apply the semi-classical limit of the generalized [Formula: see text] map for representation of variable-spin systems in a four-dimensional symplectic manifold and approximate their evolution terms of effective classical dynamics on [Formula: see text]. Using the asymptotic form of the star-product, we manage to “quantize” one of the classical dynamic variables and introduce a discretized version of the Truncated Wigner Approximation (TWA). Two emblematic examples of quantum dynamics (rotor in an external field and two coupled spins) are analyzed, and the results of exact, continuous, and discretized versions of TWA are compared.
format Online
Article
Text
id pubmed-8229760
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-82297602021-06-26 Semi-Classical Discretization and Long-Time Evolution of Variable Spin Systems Morales-Hernández, Giovani E. Castellanos, Juan C. Romero, José L. Klimov, Andrei B. Entropy (Basel) Article We apply the semi-classical limit of the generalized [Formula: see text] map for representation of variable-spin systems in a four-dimensional symplectic manifold and approximate their evolution terms of effective classical dynamics on [Formula: see text]. Using the asymptotic form of the star-product, we manage to “quantize” one of the classical dynamic variables and introduce a discretized version of the Truncated Wigner Approximation (TWA). Two emblematic examples of quantum dynamics (rotor in an external field and two coupled spins) are analyzed, and the results of exact, continuous, and discretized versions of TWA are compared. MDPI 2021-05-28 /pmc/articles/PMC8229760/ /pubmed/34071644 http://dx.doi.org/10.3390/e23060684 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Morales-Hernández, Giovani E.
Castellanos, Juan C.
Romero, José L.
Klimov, Andrei B.
Semi-Classical Discretization and Long-Time Evolution of Variable Spin Systems
title Semi-Classical Discretization and Long-Time Evolution of Variable Spin Systems
title_full Semi-Classical Discretization and Long-Time Evolution of Variable Spin Systems
title_fullStr Semi-Classical Discretization and Long-Time Evolution of Variable Spin Systems
title_full_unstemmed Semi-Classical Discretization and Long-Time Evolution of Variable Spin Systems
title_short Semi-Classical Discretization and Long-Time Evolution of Variable Spin Systems
title_sort semi-classical discretization and long-time evolution of variable spin systems
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229760/
https://www.ncbi.nlm.nih.gov/pubmed/34071644
http://dx.doi.org/10.3390/e23060684
work_keys_str_mv AT moraleshernandezgiovanie semiclassicaldiscretizationandlongtimeevolutionofvariablespinsystems
AT castellanosjuanc semiclassicaldiscretizationandlongtimeevolutionofvariablespinsystems
AT romerojosel semiclassicaldiscretizationandlongtimeevolutionofvariablespinsystems
AT klimovandreib semiclassicaldiscretizationandlongtimeevolutionofvariablespinsystems