Cargando…
Recurrent Convolutional Neural Networks for 3D Mandible Segmentation in Computed Tomography
Purpose: Classic encoder–decoder-based convolutional neural network (EDCNN) approaches cannot accurately segment detailed anatomical structures of the mandible in computed tomography (CT), for instance, condyles and coronoids of the mandible, which are often affected by noise and metal artifacts. Th...
Autores principales: | Qiu, Bingjiang, Guo, Jiapan, Kraeima, Joep, Glas, Haye Hendrik, Zhang, Weichuan, Borra, Ronald J. H., Witjes, Max Johannes Hendrikus, van Ooijen, Peter M. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229770/ https://www.ncbi.nlm.nih.gov/pubmed/34072714 http://dx.doi.org/10.3390/jpm11060492 |
Ejemplares similares
-
Automatic Segmentation of Mandible from Conventional Methods to Deep Learning—A Review
por: Qiu, Bingjiang, et al.
Publicado: (2021) -
Mandible Segmentation of Dental CBCT Scans Affected by Metal Artifacts Using Coarse-to-Fine Learning Model
por: Qiu, Bingjiang, et al.
Publicado: (2021) -
Robust and Accurate Mandible Segmentation on Dental CBCT Scans Affected by Metal Artifacts Using a Prior Shape Model
por: Qiu, Bingjiang, et al.
Publicado: (2021) -
Patient‐specific finite element models of the human mandible: Lack of consensus on current set‐ups
por: Merema, Bram Barteld Jan, et al.
Publicado: (2020) -
Three-Dimensional Evaluation of Isodose Radiation Volumes in Cases of Severe Mandibular Osteoradionecrosis for the Prediction of Recurrence after Segmental Resection
por: Glas, Haye H., et al.
Publicado: (2022)