Cargando…

Polyhydroxyalkanoate Nanoparticles for Pulmonary Drug Delivery: Interaction with Lung Surfactant

Polyhydroxyalkanoates (PHA) are polyesters produced intracellularly by many bacterial species as energy storage materials, which are used in biomedical applications, including drug delivery systems, due to their biocompatibility and biodegradability. In this study, we evaluated the potential applica...

Descripción completa

Detalles Bibliográficos
Autores principales: Cañadas, Olga, García-García, Andrea, Prieto, M. Auxiliadora, Pérez-Gil, Jesús
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229857/
https://www.ncbi.nlm.nih.gov/pubmed/34204969
http://dx.doi.org/10.3390/nano11061482
Descripción
Sumario:Polyhydroxyalkanoates (PHA) are polyesters produced intracellularly by many bacterial species as energy storage materials, which are used in biomedical applications, including drug delivery systems, due to their biocompatibility and biodegradability. In this study, we evaluated the potential application of this nanomaterial as a basis of inhaled drug delivery systems. To that end, we assessed the possible interaction between PHA nanoparticles (NPs) and pulmonary surfactant using dynamic light scattering, Langmuir balances, and epifluorescence microscopy. Our results demonstrate that NPs deposited onto preformed monolayers of DPPC or DPPC/POPG bind these surfactant lipids. This interaction facilitated the translocation of the nanomaterial towards the aqueous subphase, with the subsequent loss of lipid from the interface. NPs that remained at the interface associated with liquid expanded (LE)/tilted condensed (TC) phase boundaries, decreasing the size of condensed domains and promoting the intermixing of TC and LE phases at submicroscopic scale. This provided the stability necessary for attaining high surface pressures upon compression, countering the destabilization induced by lipid loss. These effects were observed only for high NP loads, suggesting a limit for the use of these NPs in pulmonary drug delivery.