Cargando…
Antimicrobial Activity of Quasi-Enantiomeric Cinchona Alkaloid Derivatives and Prediction Model Developed by Machine Learning
Bacterial infections that do not respond to current treatments are increasing, thus there is a need for the development of new antibiotics. Series of 20 N-substituted quaternary salts of cinchonidine (CD) and their quasi-enantiomer cinchonine (CN) were prepared and their antimicrobial activity was a...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229948/ https://www.ncbi.nlm.nih.gov/pubmed/34073082 http://dx.doi.org/10.3390/antibiotics10060659 |
_version_ | 1783713091614146560 |
---|---|
author | Ramić, Alma Skočibušić, Mirjana Odžak, Renata Čipak Gašparović, Ana Milković, Lidija Mikelić, Ana Sović, Karlo Primožič, Ines Hrenar, Tomica |
author_facet | Ramić, Alma Skočibušić, Mirjana Odžak, Renata Čipak Gašparović, Ana Milković, Lidija Mikelić, Ana Sović, Karlo Primožič, Ines Hrenar, Tomica |
author_sort | Ramić, Alma |
collection | PubMed |
description | Bacterial infections that do not respond to current treatments are increasing, thus there is a need for the development of new antibiotics. Series of 20 N-substituted quaternary salts of cinchonidine (CD) and their quasi-enantiomer cinchonine (CN) were prepared and their antimicrobial activity was assessed against a diverse panel of Gram-positive and Gram-negative bacteria. All tested compounds showed good antimicrobial potential (minimum inhibitory concentration (MIC) values 1.56 to 125.00 μg/mL), proved to be nontoxic to different human cell lines, and did not influence the production of reactive oxygen species (ROS). Seven compounds showed very strong bioactivity against some of the tested Gram-negative bacteria (MIC for E. coli and K. pneumoniae 6.25 μg/mL; MIC for P. aeruginosa 1.56 μg/mL). To establish a connection between antimicrobial data and potential energy surfaces (PES) of the compounds, activity/PES models using principal components of the disc diffusion assay and MIC and data towards PES data were built. An extensive machine learning procedure for the generation and cross-validation of multivariate linear regression models with a linear combination of original variables as well as their higher-order polynomial terms was performed. The best possible models with predicted R(2)(CD derivatives) = 0.9979 and R(2)(CN derivatives) = 0.9873 were established and presented. This activity/PES model can be used for accurate prediction of activities for new compounds based solely on their potential energy surfaces, which will enable wider screening and guided search for new potential leads. Based on the obtained results, N-quaternary derivatives of Cinchona alkaloids proved to be an excellent scaffold for further optimization of novel antibiotic species. |
format | Online Article Text |
id | pubmed-8229948 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82299482021-06-26 Antimicrobial Activity of Quasi-Enantiomeric Cinchona Alkaloid Derivatives and Prediction Model Developed by Machine Learning Ramić, Alma Skočibušić, Mirjana Odžak, Renata Čipak Gašparović, Ana Milković, Lidija Mikelić, Ana Sović, Karlo Primožič, Ines Hrenar, Tomica Antibiotics (Basel) Article Bacterial infections that do not respond to current treatments are increasing, thus there is a need for the development of new antibiotics. Series of 20 N-substituted quaternary salts of cinchonidine (CD) and their quasi-enantiomer cinchonine (CN) were prepared and their antimicrobial activity was assessed against a diverse panel of Gram-positive and Gram-negative bacteria. All tested compounds showed good antimicrobial potential (minimum inhibitory concentration (MIC) values 1.56 to 125.00 μg/mL), proved to be nontoxic to different human cell lines, and did not influence the production of reactive oxygen species (ROS). Seven compounds showed very strong bioactivity against some of the tested Gram-negative bacteria (MIC for E. coli and K. pneumoniae 6.25 μg/mL; MIC for P. aeruginosa 1.56 μg/mL). To establish a connection between antimicrobial data and potential energy surfaces (PES) of the compounds, activity/PES models using principal components of the disc diffusion assay and MIC and data towards PES data were built. An extensive machine learning procedure for the generation and cross-validation of multivariate linear regression models with a linear combination of original variables as well as their higher-order polynomial terms was performed. The best possible models with predicted R(2)(CD derivatives) = 0.9979 and R(2)(CN derivatives) = 0.9873 were established and presented. This activity/PES model can be used for accurate prediction of activities for new compounds based solely on their potential energy surfaces, which will enable wider screening and guided search for new potential leads. Based on the obtained results, N-quaternary derivatives of Cinchona alkaloids proved to be an excellent scaffold for further optimization of novel antibiotic species. MDPI 2021-05-31 /pmc/articles/PMC8229948/ /pubmed/34073082 http://dx.doi.org/10.3390/antibiotics10060659 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ramić, Alma Skočibušić, Mirjana Odžak, Renata Čipak Gašparović, Ana Milković, Lidija Mikelić, Ana Sović, Karlo Primožič, Ines Hrenar, Tomica Antimicrobial Activity of Quasi-Enantiomeric Cinchona Alkaloid Derivatives and Prediction Model Developed by Machine Learning |
title | Antimicrobial Activity of Quasi-Enantiomeric Cinchona Alkaloid Derivatives and Prediction Model Developed by Machine Learning |
title_full | Antimicrobial Activity of Quasi-Enantiomeric Cinchona Alkaloid Derivatives and Prediction Model Developed by Machine Learning |
title_fullStr | Antimicrobial Activity of Quasi-Enantiomeric Cinchona Alkaloid Derivatives and Prediction Model Developed by Machine Learning |
title_full_unstemmed | Antimicrobial Activity of Quasi-Enantiomeric Cinchona Alkaloid Derivatives and Prediction Model Developed by Machine Learning |
title_short | Antimicrobial Activity of Quasi-Enantiomeric Cinchona Alkaloid Derivatives and Prediction Model Developed by Machine Learning |
title_sort | antimicrobial activity of quasi-enantiomeric cinchona alkaloid derivatives and prediction model developed by machine learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229948/ https://www.ncbi.nlm.nih.gov/pubmed/34073082 http://dx.doi.org/10.3390/antibiotics10060659 |
work_keys_str_mv | AT ramicalma antimicrobialactivityofquasienantiomericcinchonaalkaloidderivativesandpredictionmodeldevelopedbymachinelearning AT skocibusicmirjana antimicrobialactivityofquasienantiomericcinchonaalkaloidderivativesandpredictionmodeldevelopedbymachinelearning AT odzakrenata antimicrobialactivityofquasienantiomericcinchonaalkaloidderivativesandpredictionmodeldevelopedbymachinelearning AT cipakgasparovicana antimicrobialactivityofquasienantiomericcinchonaalkaloidderivativesandpredictionmodeldevelopedbymachinelearning AT milkoviclidija antimicrobialactivityofquasienantiomericcinchonaalkaloidderivativesandpredictionmodeldevelopedbymachinelearning AT mikelicana antimicrobialactivityofquasienantiomericcinchonaalkaloidderivativesandpredictionmodeldevelopedbymachinelearning AT sovickarlo antimicrobialactivityofquasienantiomericcinchonaalkaloidderivativesandpredictionmodeldevelopedbymachinelearning AT primozicines antimicrobialactivityofquasienantiomericcinchonaalkaloidderivativesandpredictionmodeldevelopedbymachinelearning AT hrenartomica antimicrobialactivityofquasienantiomericcinchonaalkaloidderivativesandpredictionmodeldevelopedbymachinelearning |