Cargando…

Enhancement on the Tribological Properties of the Multilayer RGO/Al Matrix Composites by Cu-Coating Method

Multilayer reduced graphene oxide (mrGO) was chemically modified by electroless plating of copper on surface to form mrGO-Cu. The scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis revealed that nano-Cu particles were uniformly dispersed on the surface of mrGO. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Fengguo, Su, Ning, Guan, Renguo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229977/
https://www.ncbi.nlm.nih.gov/pubmed/34207489
http://dx.doi.org/10.3390/ma14123163
Descripción
Sumario:Multilayer reduced graphene oxide (mrGO) was chemically modified by electroless plating of copper on surface to form mrGO-Cu. The scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis revealed that nano-Cu particles were uniformly dispersed on the surface of mrGO. The mrGO-Cu powders were further utilized as reinforcements for aluminum (Al) matrix and the mrGO-Cu/Al composite was successfully fabricated through clad rolling of milled powder. The tribological properties of the mrGO-Cu/Al composites were explored. The tribological results show that the mrGO-Cu could reduce the friction coefficient and wear loss of mrGO-Cu/Al composites, since the mrGO-Cu participated in lubricating processes due to the formation of a transfer layer on the contact surface. Furthermore, it is found that the composition of mrGO-Cu could significantly influence the tribological properties of the mrGO-Cu/Al composites. The composites with 4% of mrGO-Cu for composites exhibited the best tribological behavior, which transformed from adhesive wear to abrasive wear, due to the formation of a graphite lubricating film.