Cargando…

Longitudinal Impact of Physical Activity on Brain Pulsatility Index and Cognition in Older Adults with Cardiovascular Risk Factors: A NIRS Study

Recent studies have shown that optical indices of cerebral pulsatility, including cerebral pulse amplitude, are linked to cerebrovascular health. A chronically higher cerebral pulsatility is associated with cognitive decline. Although it is widely known that regular physical activity improves cognit...

Descripción completa

Detalles Bibliográficos
Autores principales: Mohammadi, Hanieh, Gagnon, Christine, Vincent, Thomas, Kassab, Ali, Fraser, Sarah, Nigam, Anil, Lesage, Frédéric, Bherer, Louis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230110/
https://www.ncbi.nlm.nih.gov/pubmed/34072651
http://dx.doi.org/10.3390/brainsci11060730
Descripción
Sumario:Recent studies have shown that optical indices of cerebral pulsatility, including cerebral pulse amplitude, are linked to cerebrovascular health. A chronically higher cerebral pulsatility is associated with cognitive decline. Although it is widely known that regular physical activity improves cognitive functions, little is known about the association between physical activity and the optical index of cerebral pulsatility. This study assessed the impact of 12 months of regular physical activity on the changes in the optical index of cerebral pulsatility and explored its association with cognition. A total of 19 older adults (aged 59–79 years) with cardiovascular risk factors (CVRF) completed the study. Low-intensity, short-duration walking as a brief cardiovascular challenge was used to study the impact of regular physical activity on post-walking changes in cerebral pulsatility index. The participants walked on a gym track while a near-infrared spectroscopy (NIRS) device recorded hemodynamics data from the frontal and motor cortex subregions. Our data indicated that 12 months of physical activity was associated with lower global cerebral pulse amplitude, which was associated with higher cognitive scores in executive functions. Further, the global cerebral pulsatility index was reduced after short-duration walking, and this reduction was greater after 12 months of regular physical activity compared with the baseline. This may be an indication of improvement in cerebrovascular response to the cardiovascular challenge after regular physical activity. This study suggests that 12 months of physical activity may support cognitive functions through improving cerebral pulsatility in older adults with CVRF.