Cargando…
Investigating the Impact of the Bit Depth of Fluorescence-Stained Images on the Performance of Deep Learning-Based Nuclei Instance Segmentation
Nuclei instance segmentation can be considered as a key point in the computer-mediated analysis of histological fluorescence-stained (FS) images. Many computer-assisted approaches have been proposed for this task, and among them, supervised deep learning (DL) methods deliver the best performances. A...
Autores principales: | Mahbod, Amirreza, Schaefer, Gerald, Löw, Christine, Dorffner, Georg, Ecker, Rupert, Ellinger, Isabella |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230326/ https://www.ncbi.nlm.nih.gov/pubmed/34072131 http://dx.doi.org/10.3390/diagnostics11060967 |
Ejemplares similares
-
A dual decoder U-Net-based model for nuclei instance segmentation in hematoxylin and eosin-stained histological images
por: Mahbod, Amirreza, et al.
Publicado: (2022) -
Special Issue on “Advances in Skin Lesion Image Analysis Using Machine Learning Approaches”
por: Mahbod, Amirreza, et al.
Publicado: (2022) -
Guided Depth Completion with Instance Segmentation Fusion in Autonomous Driving Applications
por: El-Yabroudi, Mohammad Z., et al.
Publicado: (2022) -
Instance Sequence Queries for Video Instance Segmentation with Transformers
por: Xu, Zhujun, et al.
Publicado: (2021) -
Nuclei instance segmentation from histopathology images using Bayesian dropout based deep learning
por: Gudhe, Naga Raju, et al.
Publicado: (2023)