Cargando…

iPSCs and Exosomes: Partners in Crime Fighting Cardiovascular Diseases

Cardiovascular diseases are the leading cause of mortality worldwide. Understanding the mechanisms at the basis of these diseases is necessary in order to generate therapeutic approaches. Recently, cardiac tissue engineering and induced pluripotent stem cell (iPSC) reprogramming has led to a skyrock...

Descripción completa

Detalles Bibliográficos
Autores principales: Germena, Giulia, Hinkel, Rabea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230331/
https://www.ncbi.nlm.nih.gov/pubmed/34207562
http://dx.doi.org/10.3390/jpm11060529
Descripción
Sumario:Cardiovascular diseases are the leading cause of mortality worldwide. Understanding the mechanisms at the basis of these diseases is necessary in order to generate therapeutic approaches. Recently, cardiac tissue engineering and induced pluripotent stem cell (iPSC) reprogramming has led to a skyrocketing number of publications describing cardiovascular regeneration as a promising option for cardiovascular disease treatment. Generation of artificial tissue and organoids derived from induced pluripotent stem cells is in the pipeline for regenerative medicine. The present review summarizes the multiple approaches of heart regeneration with a special focus on iPSC application. In particular, we describe the strength of iPSCs as a tool to study the molecular mechanisms driving cardiovascular pathologies, as well as their potential in drug discovery. Moreover, we will describe some insights into novel discoveries of how stem-cell-secreted biomolecules, such as exosomes, could affect cardiac regeneration, and how the fine tuning of the immune system could be a revolutionary tool in the modulation of heart regeneration.