Cargando…

Machine Learning to Predict In-Hospital Mortality in COVID-19 Patients Using Computed Tomography-Derived Pulmonary and Vascular Features

Pulmonary parenchymal and vascular damage are frequently reported in COVID-19 patients and can be assessed with unenhanced chest computed tomography (CT), widely used as a triaging exam. Integrating clinical data, chest CT features, and CT-derived vascular metrics, we aimed to build a predictive mod...

Descripción completa

Detalles Bibliográficos
Autores principales: Schiaffino, Simone, Codari, Marina, Cozzi, Andrea, Albano, Domenico, Alì, Marco, Arioli, Roberto, Avola, Emanuele, Bnà, Claudio, Cariati, Maurizio, Carriero, Serena, Cressoni, Massimo, Danna, Pietro S. C., Della Pepa, Gianmarco, Di Leo, Giovanni, Dolci, Francesco, Falaschi, Zeno, Flor, Nicola, Foà, Riccardo A., Gitto, Salvatore, Leati, Giovanni, Magni, Veronica, Malavazos, Alexis E., Mauri, Giovanni, Messina, Carmelo, Monfardini, Lorenzo, Paschè, Alessio, Pesapane, Filippo, Sconfienza, Luca M., Secchi, Francesco, Segalini, Edoardo, Spinazzola, Angelo, Tombini, Valeria, Tresoldi, Silvia, Vanzulli, Angelo, Vicentin, Ilaria, Zagaria, Domenico, Fleischmann, Dominik, Sardanelli, Francesco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230339/
https://www.ncbi.nlm.nih.gov/pubmed/34204911
http://dx.doi.org/10.3390/jpm11060501
_version_ 1783713185531953152
author Schiaffino, Simone
Codari, Marina
Cozzi, Andrea
Albano, Domenico
Alì, Marco
Arioli, Roberto
Avola, Emanuele
Bnà, Claudio
Cariati, Maurizio
Carriero, Serena
Cressoni, Massimo
Danna, Pietro S. C.
Della Pepa, Gianmarco
Di Leo, Giovanni
Dolci, Francesco
Falaschi, Zeno
Flor, Nicola
Foà, Riccardo A.
Gitto, Salvatore
Leati, Giovanni
Magni, Veronica
Malavazos, Alexis E.
Mauri, Giovanni
Messina, Carmelo
Monfardini, Lorenzo
Paschè, Alessio
Pesapane, Filippo
Sconfienza, Luca M.
Secchi, Francesco
Segalini, Edoardo
Spinazzola, Angelo
Tombini, Valeria
Tresoldi, Silvia
Vanzulli, Angelo
Vicentin, Ilaria
Zagaria, Domenico
Fleischmann, Dominik
Sardanelli, Francesco
author_facet Schiaffino, Simone
Codari, Marina
Cozzi, Andrea
Albano, Domenico
Alì, Marco
Arioli, Roberto
Avola, Emanuele
Bnà, Claudio
Cariati, Maurizio
Carriero, Serena
Cressoni, Massimo
Danna, Pietro S. C.
Della Pepa, Gianmarco
Di Leo, Giovanni
Dolci, Francesco
Falaschi, Zeno
Flor, Nicola
Foà, Riccardo A.
Gitto, Salvatore
Leati, Giovanni
Magni, Veronica
Malavazos, Alexis E.
Mauri, Giovanni
Messina, Carmelo
Monfardini, Lorenzo
Paschè, Alessio
Pesapane, Filippo
Sconfienza, Luca M.
Secchi, Francesco
Segalini, Edoardo
Spinazzola, Angelo
Tombini, Valeria
Tresoldi, Silvia
Vanzulli, Angelo
Vicentin, Ilaria
Zagaria, Domenico
Fleischmann, Dominik
Sardanelli, Francesco
author_sort Schiaffino, Simone
collection PubMed
description Pulmonary parenchymal and vascular damage are frequently reported in COVID-19 patients and can be assessed with unenhanced chest computed tomography (CT), widely used as a triaging exam. Integrating clinical data, chest CT features, and CT-derived vascular metrics, we aimed to build a predictive model of in-hospital mortality using univariate analysis (Mann–Whitney U test) and machine learning models (support vectors machines (SVM) and multilayer perceptrons (MLP)). Patients with RT-PCR-confirmed SARS-CoV-2 infection and unenhanced chest CT performed on emergency department admission were included after retrieving their outcome (discharge or death), with an 85/15% training/test dataset split. Out of 897 patients, the 229 (26%) patients who died during hospitalization had higher median pulmonary artery diameter (29.0 mm) than patients who survived (27.0 mm, p < 0.001) and higher median ascending aortic diameter (36.6 mm versus 34.0 mm, p < 0.001). SVM and MLP best models considered the same ten input features, yielding a 0.747 (precision 0.522, recall 0.800) and 0.844 (precision 0.680, recall 0.567) area under the curve, respectively. In this model integrating clinical and radiological data, pulmonary artery diameter was the third most important predictor after age and parenchymal involvement extent, contributing to reliable in-hospital mortality prediction, highlighting the value of vascular metrics in improving patient stratification.
format Online
Article
Text
id pubmed-8230339
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-82303392021-06-26 Machine Learning to Predict In-Hospital Mortality in COVID-19 Patients Using Computed Tomography-Derived Pulmonary and Vascular Features Schiaffino, Simone Codari, Marina Cozzi, Andrea Albano, Domenico Alì, Marco Arioli, Roberto Avola, Emanuele Bnà, Claudio Cariati, Maurizio Carriero, Serena Cressoni, Massimo Danna, Pietro S. C. Della Pepa, Gianmarco Di Leo, Giovanni Dolci, Francesco Falaschi, Zeno Flor, Nicola Foà, Riccardo A. Gitto, Salvatore Leati, Giovanni Magni, Veronica Malavazos, Alexis E. Mauri, Giovanni Messina, Carmelo Monfardini, Lorenzo Paschè, Alessio Pesapane, Filippo Sconfienza, Luca M. Secchi, Francesco Segalini, Edoardo Spinazzola, Angelo Tombini, Valeria Tresoldi, Silvia Vanzulli, Angelo Vicentin, Ilaria Zagaria, Domenico Fleischmann, Dominik Sardanelli, Francesco J Pers Med Article Pulmonary parenchymal and vascular damage are frequently reported in COVID-19 patients and can be assessed with unenhanced chest computed tomography (CT), widely used as a triaging exam. Integrating clinical data, chest CT features, and CT-derived vascular metrics, we aimed to build a predictive model of in-hospital mortality using univariate analysis (Mann–Whitney U test) and machine learning models (support vectors machines (SVM) and multilayer perceptrons (MLP)). Patients with RT-PCR-confirmed SARS-CoV-2 infection and unenhanced chest CT performed on emergency department admission were included after retrieving their outcome (discharge or death), with an 85/15% training/test dataset split. Out of 897 patients, the 229 (26%) patients who died during hospitalization had higher median pulmonary artery diameter (29.0 mm) than patients who survived (27.0 mm, p < 0.001) and higher median ascending aortic diameter (36.6 mm versus 34.0 mm, p < 0.001). SVM and MLP best models considered the same ten input features, yielding a 0.747 (precision 0.522, recall 0.800) and 0.844 (precision 0.680, recall 0.567) area under the curve, respectively. In this model integrating clinical and radiological data, pulmonary artery diameter was the third most important predictor after age and parenchymal involvement extent, contributing to reliable in-hospital mortality prediction, highlighting the value of vascular metrics in improving patient stratification. MDPI 2021-06-03 /pmc/articles/PMC8230339/ /pubmed/34204911 http://dx.doi.org/10.3390/jpm11060501 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Schiaffino, Simone
Codari, Marina
Cozzi, Andrea
Albano, Domenico
Alì, Marco
Arioli, Roberto
Avola, Emanuele
Bnà, Claudio
Cariati, Maurizio
Carriero, Serena
Cressoni, Massimo
Danna, Pietro S. C.
Della Pepa, Gianmarco
Di Leo, Giovanni
Dolci, Francesco
Falaschi, Zeno
Flor, Nicola
Foà, Riccardo A.
Gitto, Salvatore
Leati, Giovanni
Magni, Veronica
Malavazos, Alexis E.
Mauri, Giovanni
Messina, Carmelo
Monfardini, Lorenzo
Paschè, Alessio
Pesapane, Filippo
Sconfienza, Luca M.
Secchi, Francesco
Segalini, Edoardo
Spinazzola, Angelo
Tombini, Valeria
Tresoldi, Silvia
Vanzulli, Angelo
Vicentin, Ilaria
Zagaria, Domenico
Fleischmann, Dominik
Sardanelli, Francesco
Machine Learning to Predict In-Hospital Mortality in COVID-19 Patients Using Computed Tomography-Derived Pulmonary and Vascular Features
title Machine Learning to Predict In-Hospital Mortality in COVID-19 Patients Using Computed Tomography-Derived Pulmonary and Vascular Features
title_full Machine Learning to Predict In-Hospital Mortality in COVID-19 Patients Using Computed Tomography-Derived Pulmonary and Vascular Features
title_fullStr Machine Learning to Predict In-Hospital Mortality in COVID-19 Patients Using Computed Tomography-Derived Pulmonary and Vascular Features
title_full_unstemmed Machine Learning to Predict In-Hospital Mortality in COVID-19 Patients Using Computed Tomography-Derived Pulmonary and Vascular Features
title_short Machine Learning to Predict In-Hospital Mortality in COVID-19 Patients Using Computed Tomography-Derived Pulmonary and Vascular Features
title_sort machine learning to predict in-hospital mortality in covid-19 patients using computed tomography-derived pulmonary and vascular features
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230339/
https://www.ncbi.nlm.nih.gov/pubmed/34204911
http://dx.doi.org/10.3390/jpm11060501
work_keys_str_mv AT schiaffinosimone machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT codarimarina machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT cozziandrea machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT albanodomenico machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT alimarco machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT arioliroberto machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT avolaemanuele machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT bnaclaudio machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT cariatimaurizio machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT carrieroserena machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT cressonimassimo machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT dannapietrosc machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT dellapepagianmarco machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT dileogiovanni machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT dolcifrancesco machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT falaschizeno machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT flornicola machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT foariccardoa machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT gittosalvatore machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT leatigiovanni machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT magniveronica machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT malavazosalexise machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT maurigiovanni machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT messinacarmelo machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT monfardinilorenzo machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT paschealessio machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT pesapanefilippo machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT sconfienzalucam machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT secchifrancesco machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT segaliniedoardo machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT spinazzolaangelo machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT tombinivaleria machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT tresoldisilvia machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT vanzulliangelo machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT vicentinilaria machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT zagariadomenico machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT fleischmanndominik machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures
AT sardanellifrancesco machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures