Cargando…
Machine Learning to Predict In-Hospital Mortality in COVID-19 Patients Using Computed Tomography-Derived Pulmonary and Vascular Features
Pulmonary parenchymal and vascular damage are frequently reported in COVID-19 patients and can be assessed with unenhanced chest computed tomography (CT), widely used as a triaging exam. Integrating clinical data, chest CT features, and CT-derived vascular metrics, we aimed to build a predictive mod...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230339/ https://www.ncbi.nlm.nih.gov/pubmed/34204911 http://dx.doi.org/10.3390/jpm11060501 |
_version_ | 1783713185531953152 |
---|---|
author | Schiaffino, Simone Codari, Marina Cozzi, Andrea Albano, Domenico Alì, Marco Arioli, Roberto Avola, Emanuele Bnà, Claudio Cariati, Maurizio Carriero, Serena Cressoni, Massimo Danna, Pietro S. C. Della Pepa, Gianmarco Di Leo, Giovanni Dolci, Francesco Falaschi, Zeno Flor, Nicola Foà, Riccardo A. Gitto, Salvatore Leati, Giovanni Magni, Veronica Malavazos, Alexis E. Mauri, Giovanni Messina, Carmelo Monfardini, Lorenzo Paschè, Alessio Pesapane, Filippo Sconfienza, Luca M. Secchi, Francesco Segalini, Edoardo Spinazzola, Angelo Tombini, Valeria Tresoldi, Silvia Vanzulli, Angelo Vicentin, Ilaria Zagaria, Domenico Fleischmann, Dominik Sardanelli, Francesco |
author_facet | Schiaffino, Simone Codari, Marina Cozzi, Andrea Albano, Domenico Alì, Marco Arioli, Roberto Avola, Emanuele Bnà, Claudio Cariati, Maurizio Carriero, Serena Cressoni, Massimo Danna, Pietro S. C. Della Pepa, Gianmarco Di Leo, Giovanni Dolci, Francesco Falaschi, Zeno Flor, Nicola Foà, Riccardo A. Gitto, Salvatore Leati, Giovanni Magni, Veronica Malavazos, Alexis E. Mauri, Giovanni Messina, Carmelo Monfardini, Lorenzo Paschè, Alessio Pesapane, Filippo Sconfienza, Luca M. Secchi, Francesco Segalini, Edoardo Spinazzola, Angelo Tombini, Valeria Tresoldi, Silvia Vanzulli, Angelo Vicentin, Ilaria Zagaria, Domenico Fleischmann, Dominik Sardanelli, Francesco |
author_sort | Schiaffino, Simone |
collection | PubMed |
description | Pulmonary parenchymal and vascular damage are frequently reported in COVID-19 patients and can be assessed with unenhanced chest computed tomography (CT), widely used as a triaging exam. Integrating clinical data, chest CT features, and CT-derived vascular metrics, we aimed to build a predictive model of in-hospital mortality using univariate analysis (Mann–Whitney U test) and machine learning models (support vectors machines (SVM) and multilayer perceptrons (MLP)). Patients with RT-PCR-confirmed SARS-CoV-2 infection and unenhanced chest CT performed on emergency department admission were included after retrieving their outcome (discharge or death), with an 85/15% training/test dataset split. Out of 897 patients, the 229 (26%) patients who died during hospitalization had higher median pulmonary artery diameter (29.0 mm) than patients who survived (27.0 mm, p < 0.001) and higher median ascending aortic diameter (36.6 mm versus 34.0 mm, p < 0.001). SVM and MLP best models considered the same ten input features, yielding a 0.747 (precision 0.522, recall 0.800) and 0.844 (precision 0.680, recall 0.567) area under the curve, respectively. In this model integrating clinical and radiological data, pulmonary artery diameter was the third most important predictor after age and parenchymal involvement extent, contributing to reliable in-hospital mortality prediction, highlighting the value of vascular metrics in improving patient stratification. |
format | Online Article Text |
id | pubmed-8230339 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82303392021-06-26 Machine Learning to Predict In-Hospital Mortality in COVID-19 Patients Using Computed Tomography-Derived Pulmonary and Vascular Features Schiaffino, Simone Codari, Marina Cozzi, Andrea Albano, Domenico Alì, Marco Arioli, Roberto Avola, Emanuele Bnà, Claudio Cariati, Maurizio Carriero, Serena Cressoni, Massimo Danna, Pietro S. C. Della Pepa, Gianmarco Di Leo, Giovanni Dolci, Francesco Falaschi, Zeno Flor, Nicola Foà, Riccardo A. Gitto, Salvatore Leati, Giovanni Magni, Veronica Malavazos, Alexis E. Mauri, Giovanni Messina, Carmelo Monfardini, Lorenzo Paschè, Alessio Pesapane, Filippo Sconfienza, Luca M. Secchi, Francesco Segalini, Edoardo Spinazzola, Angelo Tombini, Valeria Tresoldi, Silvia Vanzulli, Angelo Vicentin, Ilaria Zagaria, Domenico Fleischmann, Dominik Sardanelli, Francesco J Pers Med Article Pulmonary parenchymal and vascular damage are frequently reported in COVID-19 patients and can be assessed with unenhanced chest computed tomography (CT), widely used as a triaging exam. Integrating clinical data, chest CT features, and CT-derived vascular metrics, we aimed to build a predictive model of in-hospital mortality using univariate analysis (Mann–Whitney U test) and machine learning models (support vectors machines (SVM) and multilayer perceptrons (MLP)). Patients with RT-PCR-confirmed SARS-CoV-2 infection and unenhanced chest CT performed on emergency department admission were included after retrieving their outcome (discharge or death), with an 85/15% training/test dataset split. Out of 897 patients, the 229 (26%) patients who died during hospitalization had higher median pulmonary artery diameter (29.0 mm) than patients who survived (27.0 mm, p < 0.001) and higher median ascending aortic diameter (36.6 mm versus 34.0 mm, p < 0.001). SVM and MLP best models considered the same ten input features, yielding a 0.747 (precision 0.522, recall 0.800) and 0.844 (precision 0.680, recall 0.567) area under the curve, respectively. In this model integrating clinical and radiological data, pulmonary artery diameter was the third most important predictor after age and parenchymal involvement extent, contributing to reliable in-hospital mortality prediction, highlighting the value of vascular metrics in improving patient stratification. MDPI 2021-06-03 /pmc/articles/PMC8230339/ /pubmed/34204911 http://dx.doi.org/10.3390/jpm11060501 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Schiaffino, Simone Codari, Marina Cozzi, Andrea Albano, Domenico Alì, Marco Arioli, Roberto Avola, Emanuele Bnà, Claudio Cariati, Maurizio Carriero, Serena Cressoni, Massimo Danna, Pietro S. C. Della Pepa, Gianmarco Di Leo, Giovanni Dolci, Francesco Falaschi, Zeno Flor, Nicola Foà, Riccardo A. Gitto, Salvatore Leati, Giovanni Magni, Veronica Malavazos, Alexis E. Mauri, Giovanni Messina, Carmelo Monfardini, Lorenzo Paschè, Alessio Pesapane, Filippo Sconfienza, Luca M. Secchi, Francesco Segalini, Edoardo Spinazzola, Angelo Tombini, Valeria Tresoldi, Silvia Vanzulli, Angelo Vicentin, Ilaria Zagaria, Domenico Fleischmann, Dominik Sardanelli, Francesco Machine Learning to Predict In-Hospital Mortality in COVID-19 Patients Using Computed Tomography-Derived Pulmonary and Vascular Features |
title | Machine Learning to Predict In-Hospital Mortality in COVID-19 Patients Using Computed Tomography-Derived Pulmonary and Vascular Features |
title_full | Machine Learning to Predict In-Hospital Mortality in COVID-19 Patients Using Computed Tomography-Derived Pulmonary and Vascular Features |
title_fullStr | Machine Learning to Predict In-Hospital Mortality in COVID-19 Patients Using Computed Tomography-Derived Pulmonary and Vascular Features |
title_full_unstemmed | Machine Learning to Predict In-Hospital Mortality in COVID-19 Patients Using Computed Tomography-Derived Pulmonary and Vascular Features |
title_short | Machine Learning to Predict In-Hospital Mortality in COVID-19 Patients Using Computed Tomography-Derived Pulmonary and Vascular Features |
title_sort | machine learning to predict in-hospital mortality in covid-19 patients using computed tomography-derived pulmonary and vascular features |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230339/ https://www.ncbi.nlm.nih.gov/pubmed/34204911 http://dx.doi.org/10.3390/jpm11060501 |
work_keys_str_mv | AT schiaffinosimone machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT codarimarina machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT cozziandrea machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT albanodomenico machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT alimarco machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT arioliroberto machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT avolaemanuele machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT bnaclaudio machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT cariatimaurizio machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT carrieroserena machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT cressonimassimo machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT dannapietrosc machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT dellapepagianmarco machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT dileogiovanni machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT dolcifrancesco machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT falaschizeno machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT flornicola machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT foariccardoa machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT gittosalvatore machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT leatigiovanni machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT magniveronica machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT malavazosalexise machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT maurigiovanni machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT messinacarmelo machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT monfardinilorenzo machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT paschealessio machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT pesapanefilippo machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT sconfienzalucam machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT secchifrancesco machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT segaliniedoardo machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT spinazzolaangelo machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT tombinivaleria machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT tresoldisilvia machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT vanzulliangelo machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT vicentinilaria machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT zagariadomenico machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT fleischmanndominik machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures AT sardanellifrancesco machinelearningtopredictinhospitalmortalityincovid19patientsusingcomputedtomographyderivedpulmonaryandvascularfeatures |