Cargando…

Health-ID: A Blockchain-Based Decentralized Identity Management for Remote Healthcare

COVID-19 has made eHealth an imperative. The pandemic has been a true catalyst for remote eHealth solutions such as teleHealth. Telehealth facilitates care, diagnoses, and treatment remotely, making them more efficient, accessible, and economical. However, they have a centralized identity management...

Descripción completa

Detalles Bibliográficos
Autores principales: Javed, Ibrahim Tariq, Alharbi, Fares, Bellaj, Badr, Margaria, Tiziana, Crespi, Noel, Qureshi, Kashif Naseer
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230390/
https://www.ncbi.nlm.nih.gov/pubmed/34200778
http://dx.doi.org/10.3390/healthcare9060712
Descripción
Sumario:COVID-19 has made eHealth an imperative. The pandemic has been a true catalyst for remote eHealth solutions such as teleHealth. Telehealth facilitates care, diagnoses, and treatment remotely, making them more efficient, accessible, and economical. However, they have a centralized identity management system that restricts the interoperability of patient and healthcare provider identification. Thus, creating silos of users that are unable to authenticate themselves beyond their eHealth application’s domain. Furthermore, the consumers of remote eHealth applications are forced to trust their service providers completely. They cannot check whether their eHealth service providers adhere to the regulations to ensure the security and privacy of their identity information. Therefore, we present a blockchain-based decentralized identity management system that allows patients and healthcare providers to identify and authenticate themselves transparently and securely across different eHealth domains. Patients and healthcare providers are uniquely identified by their health identifiers (healthIDs). The identity attributes are attested by a healthcare regulator, indexed on the blockchain, and stored by the identity owner. We implemented smart contracts on an Ethereum consortium blockchain to facilities identification and authentication procedures. We further analyze the performance using different metrics, including transaction gas cost, transaction per second, number of blocks lost, and block propagation time. Parameters including block-time, gas-limit, and sealers are adjusted to achieve the optimal performance of our consortium blockchain.