Cargando…

Partial Decellularization for Segmental Tracheal Scaffold Tissue Engineering: A Preliminary Study in Rabbits

In this study, we developed a new procedure for the rapid partial decellularization of the harvested trachea. Partial decellularization was performed using a combination of detergent and sonication to completely remove the epithelial layers outside of the cartilage ring. The post-decellularized trac...

Descripción completa

Detalles Bibliográficos
Autores principales: Dang, Luong Huu, Tseng, Yuan, Tseng, How, Hung, Shih-Han
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230409/
https://www.ncbi.nlm.nih.gov/pubmed/34200705
http://dx.doi.org/10.3390/biom11060866
Descripción
Sumario:In this study, we developed a new procedure for the rapid partial decellularization of the harvested trachea. Partial decellularization was performed using a combination of detergent and sonication to completely remove the epithelial layers outside of the cartilage ring. The post-decellularized tracheal segments were assessed with vital staining, which showed that the core cartilage cells remarkably remained intact while the cells outside of the cartilage were no longer viable. The ability of the decellularized tracheal segments to evade immune rejection was evaluated through heterotopic implantation of the segments into the chest muscle of rabbits without any immunosuppressive therapy, which demonstrated no evidence of severe rejection or tissue necrosis under H&E staining, as well as the mechanical stability under stress-pressure testing. Finally, orthotopic transplantation of partially decellularized trachea with no immunosuppression treatment resulted in 2 months of survival in two rabbits and one long-term survival (2 years) in one rabbit. Through evaluations of posttransplantation histology and endoscopy, we confirmed that our partial decellularization method could be a potential method of producing low-immunogenic cartilage scaffolds with viable, functional core cartilage cells that can achieve long-term survival after in vivo transplantation.